Math
By the time March comes around each year, many math teachers commemorate the number \(\pi\) because of the resemblance between the date 3/14 and the number 3.14. (If you teach high school, you might want to check out our article 11 Pi Day Activities for High School Students.) But it doesn't just have to be in March! The number \(\pi\) has a long and rich history that can tie into lessons all year round.
By high school, students have likely encountered plenty of \(\pi\) already and may even be equipped to learn about some of its history. Below, you can explore some of the global highlights. This history includes some mathematical concepts intended for an older student audience, such as limits and infinite series.
The History of Pi
There is no simple, single origin of the number. While we use the Greek letter \(\pi\) because of the influence of its Greek origins, the number simply represents a universal idea: the ratio between the circumference and diameter of a circle. For as long as mathematicians around the globe have been thinking about circles, they have been discovering new ways to approximate and calculate \(\pi\).
The number \(\pi\) has been studied, calculated, and thought about around the world dating back as far as 3000 BC. Take a look at the mathematicians and thinkers who have helped advance our knowledge of the number today. Note that ca. stands for circa, meaning approximately.
ca. 3000 BC
The first known people to hunt for \(\pi\) were Babylonians and Egyptians, around 5000 years ago. The Egyptian pyramids of Cheops and Sneferu at Gizeh both have a ratio of half the perimeter to the height equal to \(3\frac{1}{7}\). This ratio is possibly an early attempt at calculating \(\pi\), or the ratio between the perimeter of a circle and its diameter.
ca. 1850 BC
A famous early example of documented evidence exists in the Rhind Papyrus written by an Egyptian scribe named Ahmes. In the papyrus, Ahmes attempts to calculate the surface area of a hemisphere—a calculation that involves circles and, thus, \(\pi\)—and implies that \(\pi=\left(\frac{16}{9}\right)^2\). While not exactly accurate (that gives a value of about 3.1605), it is strikingly close given the time.
ca. 440 BC
An exact calculation of the area of a circle would reveal the value of \(\pi\) because the area \(A\) of a circle with radius \(r\) is given by \(A=\pi r^2\). The Greek mathematician Antiphon took the revolutionary step of inscribing polygons of everincreasing number of sides inside and circumscribing a circle, in effect discovering limits, one of the tenets of calculus.
ca. 265 AD
Around 265 AD, Chinese mathematician Liu Hui independently discovered the same idea as Antiphon and used an efficient method involving polygons with thousands of sides. Hui correctly determined the first four digits after the decimal point of \(\pi\) (3.1415). Around 200 years later, the Chinese mathematician Zu Chongzhi calculated \(\pi\approx\frac{355}{113}\) using Liu Hui's algorithm applied to a 12,288sided polygon, the most accurate approximation for nearly a millennium (3.141592920…).
ca. 499 AD
In the centuries that followed, Indian mathematicians made many notable advancements in calculating \(\pi\). Around 499 AD, the Indian astronomer and mathematician Aryabhata—the earliest Indian mathematician whose work is known to modern scholars—used \(\frac{62,832}{20,000}\), or exactly 3.1416, in his Aryabhatiya. In 628 AD, another Indian astronomer and mathematician, Brahmagupta, tried the inscribed polygon method up to 96 sides and made the hypothesis that \(\pi=\sqrt{10}\).
ca. 830 AD
Arabic mathematician Muhammad alKhwarizmi used a variety of values trying to calculate \(\pi\), including \(3\frac{1}{7}\), \(\sqrt{10}\), and \(\frac{62,832}{20,000}\), claiming "It is an approximation not a proof [...] and no one [...] knows the true circumference of the circle." In the same way that modern students learn that 3.14 or \(\frac{22}{7}\) work fine for most calculations, alKhwarizmi acknowledged that just using \(3\frac{1}{7}\), while not the precise value, is "faster and simpler."
ca. 1360 AD
Historically, the first exact formula for \(\pi\) used infinite series and was not available until around 1400. Medieval Indian mathematicianastronomer Madhava discovered the series, whose discovery remained unknown in the West until relatively recently. Though almost all of Madhava's original work is lost, he is referenced often in later mathematical works and represents early steps away from the finite processes of algebra into considerations of the infinite. He discovered that one can calculate \(\pi\) using the following infinite series, now known as the MadhavaLeibniz or MadhavaGregoryLeibniz series, crediting other mathematicians who independently discovered the series centuries later: \(\frac{\pi}{4}=1\frac{1}{3}+\frac{1}{5}\frac{1}{7}+\frac{1}{9}\cdots\).
1424
In 1424, Persian astronomer and mathematician Jamshid alKashi calculated \(\pi\) using a polygon with \(3\cdot 2^{28}\) sides. AlKashi generated a number able to calculate the size of the universe within the "width of a horse's hair," in effect setting the world record for 180 years. While it is true that the decimal representation of \(\pi\) has an infinite number of digits, in truth, modernday NASA would only need around 16 digits of \(\pi\) to be able to calculate precise distances for orbiting spacecrafts—a benchmark achieved centuries before NASA even existed!
2002
Knowing more digits of \(\pi\) is no longer very important to mathematics. However, it does have meaning to computer scientists! Being able to calculate \(\pi\) to high precision is often used as a benchmark for the processing power of computers, along with a way to showcase human ingenuity. Japanese mathematician Yasumasa Kanada set multiple records for computing \(\pi\) between 1995 and 2002, determining over 1 trillion decimal places.
2021
\(\pi\) is still making headlines! In 2019, Japanese computer scientist Emma Haruka Iwao set a world record when Iwao and her team calculated over 31.4 trillion digits of \(\pi\). And as recently as August 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland had a supercomputer running calculations for 108 days to break Iwao's record and calculate a mindboggling 62.8 trillion digits.
Looking for lessons that make use of \(\pi\)? Our post 11 Pi Day Activities for High School Students does not only have to be for Pi Day!
***
Find rich, realworld math activities that engage students with pi using HMH Into Algebra 1, Geometry, and Algebra 2 (AGA).

11 Pi Day Activities for High School Students
Take a break from the traditional lesson plan and incorporate some fun into your curriculum by making it all about the number pi.
Richard Blankman
Shaped EditorJordan Friedman
Shaped Editor 
Pi Day Pie Problems: Practice Geometry and Problem Solving!
Celebrate Pi Day and the greatness of 3.14159 on March 14 in a way that makes math fun (and delicious) for your students!
Katrina George
Shaped Staff 
Boolean Algebra and Getting Logical in the Math Classroom
Learn the basic ideas of what Boolean algebra is, along with some history and examples plus a free activity for high school students to practice evaluating logical Boolean expressions.
Fernando J. Castillo
Related Reading

The Relationships Between Numbers in Math
Richard Blankman
Shaped Editor 
RealLife Math Problems with Solutions
Shaped Staff

4 World Kindness Day Activities to Teach Tolerance and SEL Skills
Christine Condon
Shaped EditorinChief
CORE CURRICULUM
HMH Social Studies, 612
SEE ALL SOCIAL STUDIES
AP & ELECTIVES
AP Human Geography
Personal Finance
SEE ALL SOCIAL STUDIES
AP & ELECTIVES
SUPPLEMENTAL
Writable
Professional Development
Providing professional development for teachers, HMH’s professional learning courses, coaching, and leadership advisory supports educators every step of the way.
Connected Teaching and Learning
Connected Teaching and Learning from HMH brings together ondemand professional development, students' assessment data, and relevant practice and instruction.
Social Emotional Learning Curriculum
Research shows that a socialemotional learning curriculum can lead to improved academic performance. Explore highquality SEL programs that get results.