Teacher Tabletop Flipchart Sampler

Grades K-5

$\triangle \nabla O$ HMH
 (int) Math

Into Math ${ }^{\circledR}$ supports students as they develop their conceptual understanding and grow into procedurally fluent mathematicians.

What's Inside

02 What is the Flipchart?
03 Using the Flipchart with Students
04 Grade K Samples

10 Grade 1 Samples
16 Grade 2 Samples
22 Grade 3 Samples
28 Grade 4 Samples
34 Grade 5 Samples

What is the Flipchart?

Ready-Made Mini-Lessons for Differentiation

The Teacher Tabletop Flipchart

- Pulled teacher-led, small-group instruction
- Small-group lessons are available for every lesson within the program
- Perfect for both mixed- and like-ability grouping for differentiation
- Encourages math discourse and perseverance in problem solving

Using the Flipchart with Students

Teachers can easily lead pulled, small-group instruction with the TEACHER side, which includes:

- A complete Mini-Lesson connected to daily class lessons
- Guiding questions to help facilitate math discourse and problem solving
- English Language Proficiency level supports for multilingual learners

Students engage during this pulled, small-group learning opportunity with:

- Models and hints available to support problem solving
- PDF downloads for each student to write on, if desired
- Bilingual MathBoards and manipulatives to support problem solving

Represent 3 and 4

Lesson 1.2

Ways to Make 10

$10=$ \qquad $+$ \qquad
K.13.4 Ways to Make $10 \quad$ Aso Math

Lesson 13.4
Ways to Make 10
Materials: crayons, colored paper circles
Explain to children that they will show ways to make 10.
Give the following sequence of instruction:

- Say: Listen to the word problem. There are ten cars. Some are green
and some are blue. How many cars of each kind might there be?
- Say: Draw pictures to show the problem. How many green cars?
Children should give numbers between 1 and 9 Say: The number of
green cars could be two. Have children draw two green circles while
you draw two circles and fill them in on the flipchart.
- Ask: How many blue cars? 8 How do you know? 2 and 8 make 10.
Have children draw eight blue circles while you draw eight circles on
the flipchart without filling in the circles.

Addition Equations Within 10

\qquad $+$ \qquad $=$ \qquad

```
K.11.5

\section*{Lesson 11.5}
Addition Equations Within 10


Lesson 16.1
Circles
Materials: plane shapes
Give the following sequence of instruction:
- Direct children's attention to the circles on the page. Point to each
circle. Ask: What type of shape is this?
- Next point out ways that the circles are different. Mention that
although the circle shapes might be a different color or size, they are
still circles.
- Ask children to describe how the circles are similar. Explain that all the
circles are flat and round. Point to the star. Ask children to explain why
that is not a circle. They should recognize that since the shape is not
curved, it is not a circle.


Lesson 19.2


\section*{Classify, Count, and Sort}


\section*{Lesson 4.4}

\section*{Classify, Count, and Sort}

Materials: connecting cubes with colors red, green, blue, yellow
Make a connecting train of seven cubes with two red cubes, three blue cubes and two green cubes. The colors should be mixed up. Direct children's attention to the flipchart.
Use the following sequence of instruction:
- Say: Mary has seven colored cubes in three colors to classify. She wants to know how many are in each category. Then she wants to sort the categories by count.
- Ask: What are the colors? red, blue, green Write Red at the top of the first column of the chart, Blue at the top of the second column, and Green at the top of the third column. Say: These are the categories: red, blue, green.
- Remove the first cube. Ask: What color is this? Have children identify the color. Draw one square in the corresponding column for that color. Repeat with each cube until all cubes have been categorized by color.
- Say: Sort each category by count. How many red cubes are there? Have children count the squares in the Red column. They should say two. In that column, write 2 on the line and the word cubes next to it. Repea for the other two colors. Say: There are two red cubes, three blue cubes, and two green cubes.
- Repeat the activity with another combination of colors and a different number of cubes.


\footnotetext{
(3) Proficiency Level

Beginning
Have children understand the word classify. Explain that it means to sort. Say: We can classify objects by color. It means that they can be sorted by color. Show a group of green cubes and blue cubes. Have children sort the group by placing the green cubes in one pile and the blue cubes in another. Say: You classified the cubes into green and blue. Repeat the activity with a group of cubes in two other colors.
Intermediate
Have children tell how to classify a group of cubes in two colors a group of orange cubes and blue cubes. Ask: What is the first step to classifying by color? Name the colors. Ask: What is the second step? Say the color of each cube and put it in the correct group. Have children classify the group of cubes. Advanced
Have children work in pairs to classify a group of green cubes and red cubes by color. Have them explain how to do the classification as they sort the cubes by color. Then have children count up each group.
}

\section*{Understand Greater Than}
\(\square\)
\(\square\)
\(\square\)
\(\square\)
is greater than \(\qquad\) .
is greater than \(\qquad\)


\section*{Lesson 11.1}

\(\qquad\) - \(\qquad\) \(=\) \(\qquad\)
\begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Lesson 2.5


\section*{Compose Three-Dimensional Shapes}


\section*{Lesson 14.2}


\section*{Partition Shapes into Fourths}


\section*{Lesson 16.4}

\section*{Partition Shapes into Fourths}

Materials: construction paper, Equal and Unequal Shares Cards (Teacher Resource Masters), poster board
Give the following sequence of instructions:
- Say: There are 4 friends who want to share equally. Look at the shapes on the flipchart. Ask: What could the 4 friends be sharing?
- Ask: How can you show 4 equal shares? Accept suggestions from children. Draw lines to show fourths on each shape. Ask: Are the 4 shares equal? How do you know? They are the same size and shape.
- Say: Four equal parts show fourths. Tell children that each of the 4 equal parts is one fourth. Have children shade one fourth of the rectangle, one fourth of the circle, and one fourth of the square.
- Inform children that there is another word for fourths. Say: Fourths are also called quarters. Discuss this new vocabulary with children. Some children may know that some coins are quarters and there are 4 of them in one dollar. (You need not bring this up unless a child does.)
- Ask: so, what does one quarter of mean? One quarter is the same as one fourth, so a quarter of is the same as a fourth of. Point to the shapes and have children use quarter of to describe each shaded part.
- Emphasize that there are 4 fourths (or 4 quarters) in 1 whole
- Have children suggest another way to show fourths or quarters in each shape. Then, have children use the flipchart to draw lines to show fourths and shade fourth of each shape. Children can work togeth in groups to find as many different ways as possible.

1.16.


Lesson 18.1


\section*{Interpret Picture Graphs}

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{8}{|c|}{ Picture Graph } \\
\hline red & & & & & & & \\
\hline yellow & & & & & & & \\
\hline
\end{tabular}

\section*{Lesson 8.1}


\section*{Symbols to Compare Numbers}


\section*{Lesson 6.5}



\section*{Lesson 2.1}

\section*{Even and Odd Numbers}

Materials: number cards, counters, Hundred Chart (Teacher Resource Masters)
Provide children with number cards, counters, and Hundred Charts. Tell them they will sort the numbers into two piles, even and odd. Have children shuffle the cards and place the pile of cards facedown. Give the
following sequence of instructions:

- Have children count 9 counters to match the illustration, and find their own number card with 9 .
- Have children make pairs with the counters. Explain that if they are able to pair up counters without any left over, the number is even. If they have 1 counter left over, the number is odd. Ask: Is the number of counters even or odd? Explain how you know. odd; There is one left over. Have children circle even or odd.
- Now have children show 8 counters. Tell them to determine if 8 is an even or odd number by counting by twos on the Hundred Chart. Explain that if they count a number when they count by twos, it is an even number. Ask: How can counting by twos help you decide if the number of counters is even or odd?
- Have children take turns drawing another card from the pile, showing the number with counters, and determining if it is even or odd. Children may draw the counters and write each number on the pictured numeral card, circling even or odd.
- Have children place the cards with even numbers in one pile and the cards with odd numbers in another pile, continuing until they have sorted all the cards.
- Continue with examples until children understand the concept.
© Proficiency Level
Beginning
Have children
numbers and classify them as even or odd using counters and number cards. Present 9 counters and have
children count them aloud. Have children find the corresponding number card and say the number. Demonstrate sorting the counters into sets of two. Ask if there are any counters left over. State for children that the number is odd because there is a counter left over. Guide children to circle and say odd, cross out even, and say not even. Repeat for 8 and then other numbers within 20 . Intermediate
Have children count numbers and classify them as even or odd time, having children reproduce the number with counters and count them by twos. Have children classify each number as even or odd, and circle or cross out even and odd while saying the words. Advanced
Have children count numbers and classify them as even or odd using counters and number cards. Have children write each number and state whether it is even or odd and how they know.


\section*{Lesson 7.3}


\section*{Two-Dimensional Shapes}


\(\qquad\) sides \(\qquad\) vertices

\(\qquad\) sides \(\qquad\) vertices

\(\qquad\)
\(\qquad\) vertices

\section*{Lesson 21.1}

\section*{Two-Dimensional Shapes}

Materials: two-dimensional shapes (triangles, squares, rectangles, pentagons, hexagons), Number Cards (Teacher Resource Masters) Have children work with partners. Provide one of each shape and a set of number cards (3-6) for each pair. Give the following sequence of instructions:
- Have one partner choose a shape. Have the other partner count and say the number of sides and vertices. Remind children that the singular of vertices is vertex. Repeat for the other shapes. Have children trace each shape and write a number on it to represent the number of sides and vertices.
- Have children look at the illustrated triangles. Ask: What is the same about all the triangles? What is different? Help children understand that the triangles are different sizes but each one has 3 sides and 3 vertices. Say: You can tell that each shape is a triangle because of the number of sides and vertices. Have children write the numbers. Repeat for the quadrilaterals, hexagons, and pentagons.
- Have one partner choose a number card. Have the other partner draw a shape with that number of sides and vertices. Then have the pair name the shape: triangle, quadrilateral, hexagon, or pentagon. Ask: How did you decide what shape to draw? How do you know what your shape is called?


3 sides 3 vertices


4 sides 4 vertices

Have chidren use two-dimensional shapes to identify and draw shapes. Present a shape and have children count the sides and vertices and name the shape. Ask children to trace the shape and identify the sides and vertices again. Have children write the number on each shape. Then say a number and ask children to name and show the shape with that number of sides and vertices. Intermediate
Have children use two-dimensional shapes to identify and draw
shapes. Ask children to count the sides and vertices of and describe the shape in a complete sentence. For example: The square has four sides and four vertices. Have children ex what is the same and different about the different triangles. Say a number and have children draw and describe the shape with that number of sides and vertices.
Advanced
Have children use two-dimensional shapes to identify and draw shapes. Ask children to describe each shape according to its sides number card and draw and describe thes. Have children choose a children explain what is the same and different about the differen triangles and between a square and a rectangle.


5 sides \(\underline{5}\) vertices \(\quad \underline{6}\) sides \(\underline{6}\) vertices

thirds

fourths


Lesson 22.3

\section*{Draw Equal Shares}

Materials: construction paper circles, rectangles, and squares
Provide paper shapes for each child, three of each shape. Papers should be large enough for children to fold easily. Provide the following sequence of instructions:
- Have each child hold a rectangle. Say: Fold the rectangle in half. Show the shape you have made. Help children fold exactly in half by lining up the edges.
- Have children compare their shapes. If children have found two different ways to fold, have them discuss the different ways they folded. If not, ask if they can think of another way to make halves.
- Have each child fold a square in half and compare shapes. If no children have folded on the diagonal, ask: Is there another way that you could make halves?
- Have each child fold a circle in half and compare shapes. Ask: Is there another way that you could make halves? Help children note that no another way that you could make halves? Help children note
- Repeat the folding activity for fourths, noting different ways to fold the rectangle and square. Then repeat for thirds, folding only the rectangle and square.
- Call children's attention to the illustrations. Ask: How many equal shares are there when you make halves? Have children draw to show halves on the illustrated circle, square, and rectangle. Then ask children to show halves on the square and rectangle in another way. Repeat the activity for thirds and fourths. Children will not fold a circle into thirds for this activity.
halves
thirds
fourths

(9) Proficiency Level

Beginning
Have children use folded shapes to show halves and fourths. Guide of the fold with a fircle in half and then unfold and trace the line are the shares called? Guide children to find the row of shat What labeled halves. Have children draw a line on the illustrated circle to show two halves. Repeat for a circle folded in fourths.
Intermediate
Have children use folded shapes to show halves, thirds, and fourths. Give children three rectangles and ask them to ofld one
in halves, one in thirds, and one in fourths. Have children describe each rectangle, using the number of shares and the name of the shares. Have children draw lines to show halves, thirds, and fourths
on the illustrated rectangles and explain each.
Advanced
Have children use folded shapes to show halves, thirds, and fourths. Have children choose shapes to fold to show halves, thirds,
and fourths. Ask children to explain their choices and how many shares they have made. Have children draw lines on the illustrated shapes and explain each using full sentences, such as: This circle has 2 halves. This rectangle has 3 thirds.


\section*{Lesson 3.1}


Round to the Nearest Ten Or Hundred
Give the following sequence of instruction:
- Ask students to write the number 26. Let them know that they will
round this number to the nearest tens place.
- Have students label the first number line from 10 to 32.
- Have students locate the point where 26 would be on the first number
line. Ask a student to draw the point and label it 26 .
- Ask: Between which two tens is the number 26? 20 and 30
- Have students discuss which ten is closest and how they know. 30
- Next, have students circle the digit in the place to which they are
rounding and underline the digit to the immediate right.
- Ask: How can you use the digit to the right of the tens place to know
which ten it is closest to? Possible answer: The digit 6 is greater than 5 ,
so I know 26 is closest to 30 .

\section*{Commutative Property of Multiplication}


Lesson 1.4



\section*{Lesson 2.1}



Lesson 12.1



\section*{Lesson 15.1}

\section*{Compare Fractions Using Models}

Give the following sequence of instruction
- Tell students they are going to compare the fractions \(\frac{2}{3}\) and \(\frac{2}{4}\) to determine which is greater.
- Have one student represent the two fractions on fraction circles.
- Have one student represent the two fractions with fraction strips.
- Have one student represent the two fractions on number lines.
- Ask each student in turn to say which fraction is greater and how their representation shows this. Emphasize that with fraction circles, they can look for which fraction has a greater area, or a greater "wedge," that is shaded. For fraction strips, they can look for which fraction ha a longer shaded section. For number lines, they can look for which fraction is farther from 0
- Repeat with \(\frac{5}{6}\) and \(\frac{5}{8}\), having students change roles
- Repeat with \(\frac{1}{3}\) and \(\frac{3}{8}\), having students change roles.

(3) Proficiency Level

Beginning
Have students use concrete and visual models to represent and compare fractions. Show students fraction stries that represent various fractions, including \(\frac{5}{6}\) and \(\frac{5}{8}\). Have students point to the visual models for \(\frac{5}{6}\) and \(\frac{5}{8}\). Ask: Which is longer, five sixths or five eighths? Have students choose the appropriate symbol to complete this statement. 5 5 5 complete this statement: \(\frac{5}{6} \bigcirc \frac{5}{8}\)
Intermediate
Have small groups of students work together to use concrete and visual models to represent and compare fractions. Have students make concrete or visual models of \(\frac{5}{6}\) and \(\frac{5}{8}\). Have students say the name of circle/is longer/is farther from zero? Which fraction is greater?
Advanced
Advanced
Have students explain how to use concrete and visual models
to represent and compare fractions. Have students write the fractions \(\frac{5}{6}\) and \(\frac{5}{8}\) and represent them with visual models. Have students write to describe making their models and explain how their models support their choice of which fraction is greater.


\section*{Lesson 18.3}



\section*{Lesson 5.6}


\section*{Multistep Multiplication and Division Problems}

\(\qquad\) = \(\qquad\)

\(\qquad\) \(=\) \(\qquad\)


\section*{Lesson 7.4}



Lesson 2.4
Perimeter Formula for Rectangles


\section*{Lesson 11.4}



\section*{Lesson 13.2}
Angles
Give the following sequence of instruction:
- Ask students to draw a unit angle to measure the angle on the left.
Have students determine the number of unit angles needed to fill
the angle.
- Ask students to use the same unit angle to measure the angle on
the right.
to fave fill the angle.
- Havents determine the number of unit angles needed
figures represent angles with the same measure.
- Repeat with a different unit angle.


\section*{Lesson 19.2}

\section*{Compare Customary Units of Length}

Give the following sequence of instruction:
- Draw students' attention to the measuring tools. Ask: What do you know about these measuring tools? Possible answers: They are used to measure length. The top tool is a yardstick and the bottom tool is a foot ruler.
- Ask: How many inches are in 1 foot? 12 inches How do you know? Possible answer: A foot ruler has 12 inches. How many inches are in 1 yard? 36 inches How do you know? Possible answer: A yardstick has 36 inches.
- Ask: How many 1 -foot rulers are equal in length to the yardstick? 3 How do you know? Possible answer: I can lay three 1-foot rulers end to-end, and they will have the same length as the yardstick. There are 12 inches in 1 foot. I can multiply \(12 \times 3=36\) to check that there are 3 feet in 1 yard. Have students explore the number of feet in a yard by drawing two more foot rulers along the length of the yardstick.
- Ask: Which is longer, 2 feet or 20 inches? 2 feet Have students write the comparison on the flipchart. How do you know? Possible answer There are 24 inches in 2 feet. 24 inches is longer than 20 inches. If students have trouble, have them mark the end of the second foot ruler on the yardstick.
- Repeat with other comparisons. As students become more confident, ask them to pose questions to others, such as "Which is shorter, 14 inches or 1 foot?"

\section*{(3) Proficiency Level}

Beginning
Say the customary units of length, inch, foot, and yard, aloud. Have students repeat as you say each word. Ask students to point to the foot ruler. Ask students to point to the yardstick. Intermediate
Have students identify customary units of length. Point to the yardstick. Ask: How many inches are in one yard? Have students complete the following sentence: There are \(\quad\) inches in
one one . Point to the ruler. Ask: How many inches are in one foot? Have students complete the following sentence: There
are
inches in one are
pairs to compare 2 feet and 20 inches. Ask: How many inches are 2 feet? Have students complete the following sentence: There are _inches in 2 feet.
Advanced
Have students describe how to use a yardstick and a ruler to compare inches, feet, and yards. Students' descriptions should include using the tools to see that there are 12 inches in 1 foot and
3 feet or 36 inches in 1 yard.


Lesson 2.3


\section*{Divide Decimals}

Original Division Problem
\(\qquad\) \(\div\) \(\qquad\) \(=\) \(\qquad\)


New Division Problem
\(\qquad\) \(\div\) \(\qquad\)
\(\qquad\)


Fractions with a Common Denominator


Lesson 6.4

\section*{Fractions with a Common Denominator}

\section*{Materials: fraction circles}

Students use fraction circles to find equivalent fractions and a common denominator.
Give the following sequence of instruction:
- Have students name the fraction that one part of the first circle represents. \(\frac{1}{4}\)
- Have students use their fraction circles to find other same-sized pieces that fit exactly in a \(\frac{1}{4}\) part.
- Have students draw on the chart to show the same-sized pieces they found.
- Have students write two different equivalent fractions for \(\frac{1}{4}\) below the first circle. \(\frac{2}{8}\) and \(\frac{3}{12}\)
- Have students name the fraction that one part of the second circle represents. \(\frac{1}{6}\)
- Have students use their fraction circles to find other same-sized pieces that fit exactly in a \(\frac{1}{6}\) part.
- Have students draw on the chart to show the same-sized pieces they found.
- Have students write an equivalent fraction for \(\frac{1}{6}\) below the second circle. \(\frac{2}{12}\)
- Have students circle the equivalent fractions for \(\frac{1}{4}\) and \(\frac{1}{6}\) that have a common denominator. \(\frac{3}{12}\) and \(\frac{2}{12}\)
- Have students repeat the activity with other pairs of fractions.


\section*{(9) Proficiency Level}

Beginning
Have students represent equivalent fractions and a common denominator using fraction circles. Write the term equivalent fractions, and then have students write fractions that are equivalent to \(\frac{1}{4}\) and \(\frac{1}{6}\). Have students point to the equivalent and have them repeat. Write the term common denominator, and then have students circle \(\frac{3}{12}\) and \(\frac{2}{12}\) and then point to the denominators. As students point, say common denominator, and have them repeat.
Intermediate
Have students describe equivalent fractions and a common denominator. Have students describe the following fraction pairs. \(\frac{1}{4}\) and \(\frac{3}{12}, \frac{1}{6}\) and \(\frac{2}{12}\), and \(\frac{3}{12}\) and \(\frac{2}{12}\). Have students use the terms equivalent fractions and common denominator in their comparisons. Advanced
Have students explain the meaning of the term equivalent fractions. Have students use the fractions \(\frac{1}{4}\) and \(\frac{1}{6}\) in their explanations.

Grouping Symbols
\[
5+6 \times 9-3
\]

\section*{Lesson 4.4}

\section*{Grouping Symbols}
tudents explore how adding parentheses changes the value of numerical expressio
Give the following sequence of instruction:
- Have students look at the numerical expression on the student-facing side. Ask them to evaluate the numerical expression. 56
- Ask students to show where they can add a pair of parentheses to the numerical expression without changing the value. Have them explain why this does not change the value. Lead students to state that the order of operations does not change.
\((5+6 \times 9)-3.5+(6 \times 9)-3\)
Ask students where they would place a pair of parentheses so the value of the numerical expression is 96 . \((5+6) \times 9-3\) Have a student demonstrate on the flipchart and explain his or her strategy for placing the parentheses
- Ask students where they would place a pair of parentheses so the
value of the numerical expression is \(41.5+6 \times(9-3)\) Have a student demonstrate on the flipchart and explain his or her strategy in placing the parentheses.
- Ask students where they would place parentheses so the value of the numerical expression is 66 . \((5+6) \times(9-3)\) Have a student demonstrate on the flipchart and explain his or her strategy for placing the parentheses.
- As time permits, repeat the activity with another numerical expression.

\footnotetext{
(9) Proficiency Level

Beginning
Have students demonstrate their understanding of parentheses. Writ the numerical expressions \((5+6) \times 9-3\) and \(5+6 \times(9-3)\). Point to one pair of parentheses in the numerical expressions. are evaluated first. Ask: Which part of each numerical expression is evaluated first? Have students point to the parts they will evaluate first. For each numerical expression, ask: What is the value? Intermediate
Have students work in pairs to describe how parentheses and the order of operations determine how an expression is evaluated. Have one partner evaluate \((5+6) \times 9-3\) and the other partner evaluate \(5+6 \times(9-3)\). Have them describe the order in which
they evaluate the expressions. Have pairs use words that describe the order, such as first, then Advanced
Advanced
Have students explain how grouping symbols affect the way a numerical expression is evaluated. Students should use examples, such as \((5+6) \times 9-3\) and \(5+6 \times(9-3)\), and include the term order of operations in their explanations.
}


Lesson 20.2


\section*{Numerical Patterns}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Number of Elephants & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Number of Trunks & 1 & 2 & & & & \\
\hline Number of Legs & 4 & 8 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Lesson 19.4

\section*{Numerical Patterns}

Materials: Generate and Identify Numerical Patterns (Teacher Resource Masters)

Give the following sequence of instruction
- Direct students to look at the situation represented by the table on the flipchart.
- Ask: When you add an elephant, by how much does the number of trunks increase? 1
- Ask: When you add an elephant, by how much does the number o legs increase? 4
- Discuss with students what the rule for the number of trunks is. Guide students to identify the rule "Add 1," starting at 1. Have students complete the table for the number of trunks.
- Discuss with students what the rule for the number of legs is. Guid students to identify the rule "Add 4," starting at 4. Have students complete the table for the number of legs.
- Have students compare the row for the number of trunks to the row for the number of legs. Ask students how the corresponding entries are related. Possible answer: The number of legs is 4 times the number of trunks.
- Ask students to write the ordered pairs relating the number of trunks and legs using the number of trunks for the \(x\)-coordinates and the number of legs for \(y\)-coordinates. \((1,4),(2,8)(3,12)(4,16)\) \((5,20),(6,24)\)
- As time permits, have students identify patterns with another situation.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Number of Elephants & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Number of Trunks & 1 & 2 & & & & \\
\hline Number of Legs & 4 & 8 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\footnotetext{
(3) Proficiency Level

Beginning
Explain that to identify a pattern, students should look for a rule to go from one number to the next. Say: Look at the chart. Point to
patterns that start at 1 . Have students point to examples of these patterns that start at 1 . Have students point to examples of these rules: Add 1. Add 4. Then write the ordered pair (1, 4). Say:
to the coordinate that represents the trunks. Repeat for legs. Intermediate
Intermediate
Have students match these rules to the patterns in the chart: Start at 1. Start at 4. Add 1. Add 4. Ask: What operation can you use to show the relationship between trunks and legs? Advanced
Have pairs write a rule for the number of trunks and the number of legs. Then have them express the relationship between the numbers of trunks and legs in a complete sentence.
}

Notes

Notes



\title{
To learn more, visit hmhco.com/SampleMath
}```

