Houghton Mifflin Harcourt

Florida's B.E.S.T. Into Algebra 1 ©2023

correlated to the

Access Points to Florida's B.E.S.T. Standards: Mathematics (2021)

Grade 9-12

| Standard | Descriptor | Citations |
| :--- | :--- | :--- | :--- |
| Strand: NUMBER SENSE AND OPERATIONS | SE/TE: 9-11, 13-20
 TE Only: 13A-13C | |
| Standard 1: Generate equivalent expressions and perform operations with expressions involving exponents, radicals or logarithms. | | |
| MA.912.NSO.1.AP.1 | Evaluate numerical expressions involving rational exponents. | SE/TE: 13-20, 281-288
 TE Only: 13A-13C |
| MA.912.NSO.1.AP.2 | Identify equivalent algebraic expressions using properties of
 exponents. | SE/TE: 13-20, 281-288
 TE Only: 13A-13C |
| MA.912.NSO.1.AP.3 | Using properties of exponents, identify equivalent algebraic
 expressions involving radicals and rational exponents. Radicands are
 limited to monomial algebraic expression. | SE/TE: 5-12
 MA.912.NSO.1.AP.4
 Apply previous understanding of operations with rational numbers to
 add and subtract numerical radicals that are in radical form. |
| MA.912.NSO.1.AP.5 | Add and subtract algebraic expressions involving radicals. Radicands
 are limited to monomial algebraic expressions. | SE/TE: 5-12 |
| MA.912.NSO.1.AP.6 | Given a numerical logarithmic expression, identify an equivalent
 numerical expression using the properties of logarithms or exponents. | This is typically covered in an Algebra 2
 course. |
| MA.912.NSO.1.AP.7 | Given an algebraic logarithmic expression, identify an equivalent
 algebraic expression using the properties of logarithms or exponents. | This is typically covered in an Algebra 2
 course. |
| Standard 2: Represent and perform operations with expressions within the complex number system. | | |
| MA.912.NSO.2.AP.1 | Extend previous understanding of the real number system to include
 the complex number system. Add and subtract complex numbers. | This is typically covered in an Algebra 2
 course. | Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

Standard	Descriptor	Citations
MA.912.NSO.2.AP. 2	Represent addition and subtraction of complex numbers geometrically on the complex plane.	This is typically covered in an Algebra 2 course.
Strand: ALGEBRAIC REASONING		
Standard 1: Interpret and rewrite algebraic expressions and equations in equivalent forms.		
MA.912.AR.1.AP. 1	Identify a part(s) of an equation or expression and explain the meaning within the context of a problem.	SE/TE: 25-30, 265-272, 273-280, 281-288 TE Only: 25A-25D, 265D, 273B-273D, 281D
MA.912.AR.1.AP. 2	Rearrange an equation or a formula for a specific variable.	$\begin{aligned} & \text { SE/TE: 39-46, 97-106, 115-124, 431-438, } \\ & \text { 461-480 } \\ & \text { TE Only: 39A-39D, 115D, 471C-471D } \end{aligned}$
MA.912.AR.1.AP. 3	Add, subtract and multiply polynomial expressions with integer coefficients.	SE/TE: 327-352, 357-370 TE Only: 327C-327D, 357A-357D
MA.912.AR.1.AP. 4	Divide a polynomial expression by a monomial expression with integer coefficients.	SE/TE: 335-344
MA.912.AR.1.AP. 5	Divide polynomial expressions using long division, synthetic division and algebraic manipulation where the denominator is a linear expression.	SE/TE: 335-344
MA.912.AR.1.AP. 6	Solve mathematical and/or real-world problems involving addition, subtraction multiplication or division of polynomials with integer coefficients.	SE/TE: 327-352, 357-370 TE Only: 357A-357D
MA.912.AR.1.AP. 7	Factor a quadratic expression.	SE/TE: 385-392, 393-400, 401-410 TE Only: 385A-385D, 393A-393D
MA.912.AR.1.AP. 8	Select a polynomial expression as a product of polynomials with integer coefficients over the real or complex number system.	SE/TE: 393-400, 401-410 TE Only: 385A-385D, 393A-393D
MA.912.AR.1.AP. 9	Apply previous understanding of rational number operations with common denominators to add and subtract rational expressions.	This is typically covered in an Algebra 2 course.

Houghton Mifflin Harcourt Florida's B.E.S.T. Into Algebra 1 ©2023 correlated to the Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

Standard	Descriptor	Citations
Standard 2: Write, solve and graph linear equations, functions and inequalities in one and two variables.		
MA.912.AR.2.AP. 1	Given an equation in a real-world context, solve one-variable multistep linear equations.	SE/TE: 31-38 TE Only: 31A-31D
MA.912.AR.2.AP. 2	Select a linear two-variable equation to represent relationships between quantities from a graph, a written description or a table of values within a mathematical or real-world context.	SE/TE: 67-74, 97-106, 115-124
MA.912.AR.2.AP. 3	Select a linear two-variable equation in slope intercept form for a line that is parallel or perpendicular to a given line and goes through a given point.	SE/TE: 125-132 TE Only: 125C-125D
MA.912.AR.2.AP. 4	Given a table, equation or written description of a linear function, select a graph of that function and determine at least two key features (can include domain, range, y-intercept or slope).	SE/TE: 67-74, 89-96, 97-106, 115-124
MA.912.AR.2.AP. 5	Given a real-world problem select a graph that is modeled by a linear function and determine domain constraints in terms of the context.	$\begin{aligned} & \text { SE/TE: 67-74, 89-96, 97-106, 107-114, 115- } \\ & 124,155-162 \end{aligned}$
MA.912.AR.2.AP. 6	Given a mathematical and/or real-world context, select a one-variable linear inequality that represents the solution algebraically or graphically.	SE/TE: 47-54, 55-62 TE Only: 47C-47D, 55A-55D
MA.912.AR.2.AP. 7	Select a two-variable linear inequality to represent relationships between quantities from a graph.	SE/TE: 243-250, 251-258 TE Only: 243A-243D
MA.912.AR.2.AP. 8	Given a two-variable linear inequality, select a graph that represents the solution.	SE/TE: 243-250, 251-258 TE Only: 243A-243D
Standard 3: Write, solve and graph quadratic equations, functions and inequalities in one and two variables.		
MA.912.AR.3.AP. 1	Given a one-variable quadratic equation from a mathematical or realworld context, select the solution to the equation over the real number system.	SE/TE: 385-392, 393-400, 401-410,415-422, 423-444 TE Only: 401A-401D, 413B-413C
MA.912.AR.3.AP. 10	Select the graph of the solution set to a two-variable quadratic inequality.	This is typically covered in an Algebra 2 course.

Houghton Mifflin Harcourt Florida's B.E.S.T. Into Algebra 1 ©2023 correlated to the Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

Standard	Descriptor	Citations
MA.912.AR.3.AP. 2	Solve mathematical one-variable quadratic equations with integer coefficients over the real and complex number systems.	SE/TE: 385-392, 393-400, 401-410, 415-422, 423-444 TE Only: 401A-401D, 413B-413C, 431A431D
MA.912.AR.3.AP. 3	Given a mathematical or real-world context, select a one-variable quadratic inequality over the real number system that represents the solution algebraically or graphically.	This is typically covered in an Algebra 2 course.
MA.912.AR.3.AP. 4	Select a quadratic function to represent the relationship between two quantities from a graph.	SE/TE: 451-460, 461-470, 471-480
MA.912.AR.3.AP. 5	Given the ??-intercepts and another point on the graph of a quadratic function, select the equation for the function.	SE/TE: 471-480 TE Only: 471C-471D
MA.912.AR.3.AP. 6	Given an expression or equation representing a quadratic function in vertex form, determine the vertex and zeros.	SE/TE: 377-384, 461-470 ,471-480, 481-488 TE Only: 471C-471D
MA.912.AR.3.AP. 7	Given a table, equation or written description of a quadratic function, select the graph that represents the function.	SE/TE: 451-460, 461-470, 471-480 TE Only: 471C-471D
MA.912.AR.3.AP. 8	Solve mathematical problems that are modeled with quadratic functions, using key features and select the graph that represents this function.	SE/TE: 377-384, 451-460, 461-470, 471-480 TE Only: 471C-471D
MA.912.AR.3.AP. 9	Select two-variable quadratic inequalities to represent relationships between quantities from a graph or a written description.	This is typically covered in an Algebra 2 course.
Standard 4: Write, solve and graph absolute value equations, functions and inequalities in one and two variables.		
MA.912.AR.4.AP. 1	Solve a one variable absolute value equation.	SE/TE: 199-206 TE Only: 199A-199D
MA.912.AR.4.AP. 2	Solve a one-variable absolute value inequality. Represent solutions algebraically or graphically.	SE/TE: 199-206 TE Only: 199A-199D
MA.912.AR.4.AP. 3	Given a table, equation or written description of an absolute value function, select the graph that represents the function.	SE/TE: 187, 189-198

Houghton Mifflin Harcourt Florida's B.E.S.T. Into Algebra 1 ©2023 correlated to the Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

Standard	Descriptor	Citations
MA.912.AR.4.AP. 4	Solve mathematical problems that are modeled with absolute value functions, using key features and select the graph that represents this function.	SE/TE: 187, 189-198, 199-206
Standard 5: Write, solve and graph exponential and logarithmic equations and functions in one and two variables.		
MA.912.AR.5.AP. 2	Solve one-variable equations involving logarithms or exponential expressions. Identify any extraneous solutions.	SE/TE: 265-272, 273-280
MA.912.AR.5.AP. 3	Given a real-world context, identify an exponential function as representing growth or decay.	SE/TE: 265-272, 273-280, 281-288
MA.912.AR.5.AP. 4	Select an exponential function to represent two quantities from a graph or a table of values.	SE/TE: 265-272, 273-280, 281-288, 289-296
MA.912.AR.5.AP. 5	Given an expression or equation representing an exponential function, reveal the constant percent rate of change per unit interval using the properties of exponents.	SE/TE: 315-324
MA.912.AR.5.AP. 6	Given a table, equation or written description of an exponential function, select the graph that represents the function	SE/TE: 265-272, 273-280, 281-288
MA.912.AR.5.AP. 7	Solve and select the graph of mathematical exponential functions.	SE/TE: 289-296
MA.912.AR.5.AP. 8	Given an equation of a logarithmic function, select the graph of that function.	This is typically covered in an Algebra 2 course.
MA.912.AR.5.AP. 9	Solve and select the graph of mathematical logarithmic functions.	This is typically covered in an Algebra 2 course.
Standard 6: Solve and graph polynomial equations and functions in one and two variables.		
MA.912.AR.6.AP. 1	Solve one-variable polynomial equations of degree 3 or higher in factored form, over the real number system.	This is typically covered in an Algebra 2 course.
MA.912.AR.6.AP. 5	Create a rough graph of a polynomial function of degree 3 or higher (in factored form) using zeros, multiplicity and knowledge of end behavior.	SE/TE: 501-508
Standard 7: Solve and graph radical equations and functions in one and two variables.		
MA.912.AR.7.AP. 1	Solve one-variable radical equations and identify any extraneous solutions.	This is typically covered in an Algebra 2 course.
MA.912.AR.7.AP. 2	Given a table, equation or written description of a square root or cube root function, select the graph that represents the function.	SE/TE: 501-508

Houghton Mifflin Harcourt Florida's B.E.S.T. Into Algebra 1 ©2023 correlated to the Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

Standard	Descriptor	Citations
MA.912.AR.7.AP. 3	Given a mathematical or real-world problem that is modeled with square root or cube root functions, using key features (in terms of the context), select the graph that represents this model.	SE/TE: 501-508
Standard 8: Solve and graph rational equations and functions in one and two variables.		
MA.912.AR.8.AP. 1	Solve one-variable rational equations and identify any extraneous solutions.	This is typically covered in an Algebra 2 course.
MA.912.AR.8.AP. 2	Given a table, equation or written description of a rational function, select the graph that represents the function.	This is typically covered in an Algebra 2 course.
MA.912.AR.8.AP. 3	Given a mathematical and/or real-world problem that is modeled with rational functions, using key features (in terms of the context), select the graph that represents this model.	This is typically covered in an Algebra 2 course.
Standard 9: Write and solve a system of two- and three-variable equations and inequalities that describe quantities or relationships.		
MA.912.AR.9.AP. 1	Given an algebraic or graphical system of two-variable linear equations, select the solution to the system of equations.	$\begin{aligned} & \text { SE/TE: } 211-216 \text {,217-224, 225-230, 231-238, } \\ & \quad 241 \end{aligned}$
MA.912.AR.9.AP. 2	Solve a system consisting of a two-variable linear equation and a quadratic equation algebraically or graphically.).	This is typically covered in an Algebra 2 course.
MA.912.AR.9.AP. 3	Solve a system consisting of two-variable linear or quadratic equations algebraically or graphically.	This is typically covered in an Algebra 2 course.
MA.912.AR.9.AP. 4	Select the graph of the solution set of a system of two-variable linear inequalities.	SE/TE: 251-258 TE Only: 251A-251D
MA.912.AR.9.AP. 5	Select the graph of the solution set of a system of two-variable inequalities.	SE/TE: 251-258 TE Only: 251A-251D
MA.912.AR.9.AP. 6	Given a real-world context, as systems of linear equations or inequalities with identified constraints, select a solution as a viable or non-viable option.	$\begin{aligned} & \text { SE/TE: 211-216, 217-224, 225-230, 231-238, } \\ & \text { 241, 243-250, 251-258 } \end{aligned}$
MA.912.AR.9.AP. 7	Given a real-world context, as systems of linear and non-linear equations or inequalities with identified constraints, select a solution as a viable or non-viable option.	$\begin{aligned} & \text { SE/TE: 211-216, 217-224, 225-230, 231-238, } \\ & \text { 241, 243-250, 251-258 } \end{aligned}$

Standard	Descriptor	Citations
Strand: FUNCTIONS		
Standard 1: Understand, compare and analyze properties of functions.		
MA.912.F.1.AP.1a	Given an equation or graph that defines a function, identify the function type as either linear or quadratic.	$\begin{gathered} \text { SE/TE: 167-176, 177-184, 307-314, 315-322, } \\ \text { 489-496, 501-508, 509-516 } \end{gathered}$ TE Only: 315A-315D
MA.912.F.1.AP.1b	Given an input-output table with an accompanying graph, determine a function type, either linear or quadratic, that could represent it.	SE/TE: 315-322, 489-496, 501-508, 509-516 TE Only: 315A-315D
MA.912.F.1.AP. 2	Given an equation in function notation or table of a function, identify the effect of the output of the function as the domain changes.	$\begin{aligned} & \text { SE/TE: 89-96, 97-106, 189-198, 265-272, } \\ & \text { 273-280, 461-470 } \end{aligned}$
MA.912.F.1.AP. 3	Given a real-world situation represented graphically or algebraically, identify the rate of change as positive, negative, zero or undefined.	$\begin{aligned} & \text { SE/TE: 75-82, 155-162, 284-287, 310, 318, } \\ & 459,465 \end{aligned}$
MA.912.F.1.AP. 5	Identify key features of linear and quadratic functions each represented in the same way algebraically or graphically (key features are limited to domain; range; intercepts; intervals where the function is increasing, decreasing, positive or negative; end behavior).	SE/TE: 155-162, 501-508
MA.912.F.1.AP. 6	Identify key features of linear and quadratic functions each represented in a different way algebraically or graphically (key features are limited to domain; range; intercepts; intervals where the function is increasing, decreasing, positive or negative; end behavior).	$\begin{aligned} & \text { SE/TE: 289-296, 315-322, 481-488, 501-508, } \\ & \text { 509-516 } \end{aligned}$
MA.912.F.1.AP. 7	Compare key features of two functions each represented algebraically or graphically.	$\begin{aligned} & \text { SE/TE: 289-296, 315-322, 481-488, 501-508, } \\ & \text { 509-516 } \end{aligned}$
MA.912.F.1.AP. 8	Select whether a linear or quadratic function best models a given real-world situation.	$\begin{aligned} & \text { SE/TE: } 167-176,177-184,307-314,315-322, \\ & 489-496,509-516 \end{aligned}$
MA.912.F.1.AP. 9	Select whether a function is even, odd or neither when represented algebraically.	This is typically covered in an Algebra 2 course.

Standard	Descriptor	Citations
Standard 2: Identify and describe the effects of transformations on functions. Create new functions given transformations.		
MA.912.F.2.AP. 1	Select the effect (up, down, left, or right) on the graph of a given function after replacing $F(x)$ by $f(x)+k$ and $f(x+k)$ for specific values of k.	SE/TE: 137-154, 189-198, 451-460
MA.912.F.2.AP. 2	Identify the effect on the graph of a given function of two or more transformations defined by adding a real number to the x - or y values.	SE/TE: 137-154, 189-198, 451-460
MA.912.F.2.AP. 3	Given the graph of a given function after replacing $f(x)$ by $f(x)+k$ and $f(x+k), k f(x)$, for specific values of k select the type of transformation and find the value of the real number k .	SE/TE: 137-154, 189-198, 451-460
MA.912.F.2.AP. 5	Given a table, equation or graph that represents a function, select a corresponding table, equation or graph of the transformed function defined by adding a real number to the x - or y -values.	SE/TE: 137-154, 189-198, 451-460
Standard 3: Create new functions from existing functions.		
MA.912.F.3.AP. 2	Given a mathematical and/or real-world context, combine two or more functions, limited to linear, quadratic, and polynomial, using arithmetic operations of addition, subtraction, or multiplication.	This is typically covered in an Algebra 2 course.
MA.912.F.3.AP. 4	Given a composite function within a mathematical or real-world context, identify the domain and range of the composite function.	This is typically covered in an Algebra 2 course.
MA.912.F.3.AP. 6	Determine whether an inverse function exists by analyzing graphs and equations.	SE/TE: 481-487
MA.912.F.3.AP. 7	Represent the inverse of a function algebraically. Use composition of functions to verify that one function is the inverse of the other.	SE/TE: 481-487
Strand: FINANCIAL LITERACY		
Standard 3: Describe the advantages and disadvantages of short-term and long-term purchases.		
MA.912.FL.3.AP. 1	Compare simple and compound interest over time.	SE/TE: 297-302
MA.912.FL.3.AP. 2	Solve real-world problems involving simple and compound interest.	SE/TE: 297-302
MA.912.FL.3.AP. 4	Identify the relationship between simple interest and linear growth. Identify the relationship between compound interest and exponential growth.	SE/TE: 297-302

Houghton Mifflin Harcourt Florida's B.E.S.T. Into Algebra 1 ©2023 correlated to the Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

Standard	Descriptor	Citations
Strand: GEOMETRIC REASONING		
Standard 1: Describe the advantages and disadvantages of financial and investment plans, including insurances.		
MA.912.GR.1.AP. 1	Use the relationships and theorems about lines and angles to solve mathematical or real-world problems involving postulates, relationships and theorems of lines and angles.	This is covered in a Geometry course.
MA.912.GR.1.AP. 2	Identify the triangle congruence or similarity criteria; Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Angle-Angle-Side, AngleAngle and Hypotenuse-Leg.	This is covered in a Geometry course.
MA.912.GR.1.AP. 3	Use the relationships and theorems about triangles. Solve mathematical and/or real-world problems involving postulates, relationships and theorems of triangles.	This is covered in a Geometry course.
MA.912.GR.1.AP. 4	Use the relationships and theorems about parallelograms. Solve mathematical and/or real-world problems involving postulates, relationships and theorems of parallelograms.	This is covered in a Geometry course.
MA.912.GR.1.AP. 5	Use the relationships and theorems about trapezoids. Solve mathematical and/or real-world problems involving postulates, relationships and theorems of trapezoids.	This is covered in a Geometry course.
MA.912.GR.1.AP. 6	Use the definitions of congruent or similar figures to solve mathematical and/or real-world problems involving two-dimensional figures.	This is covered in a Geometry course.
Standard 2: Apply properties of transformations to describe congruence or similarity.		
MA.912.GR.2.AP.1a	Given a preimage and image, identify the transformation.	This is covered in a Geometry course.
MA.912.GR.2.AP.1b	Select the algebraic coordinates that represent the transformation.	This is covered in a Geometry course.
MA.912.GR.2.AP. 2	Select a transformation that preserves distance.	This is covered in a Geometry course.
MA.912.GR.2.AP. 3	Identify a given sequence of transformations, that includes translations or reflections, that will map a given figure onto itself or onto another congruent figure.	This is covered in a Geometry course.
MA.912.GR.2.AP. 5	Given a geometric figure and a sequence of transformations, select the transformed figure on a coordinate plane.	This is covered in a Geometry course.
MA.912.GR.2.AP. 6	Use rigid transformations that includes translations or reflections to map one figure onto another to show that the two figures are congruent.	This is covered in a Geometry course.

Houghton Mifflin Harcourt Florida's B.E.S.T. Into Algebra 1 ©2023 correlated to the Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

Standard	Descriptor	Citations
MA.912.GR.2.AP. 8	Identify an appropriate transformation to map one figure onto another to show that the two figures are similar.	This is covered in a Geometry course.
Standard 3: Use coordinate geometry to solve problems or prove relationships.		
MA.912.GR.3.AP. 1	Select the weighted average of two or more points on a line.	This is covered in a Geometry course.
MA.912.GR.3.AP. 2	Use coordinate geometry to classify definitions, properties and theorems involving circles, triangles, or quadrilaterals.	This is covered in a Geometry course.
MA.912.GR.3.AP. 3	Use coordinate geometry to solve mathematical geometric problems involving lines, triangles and quadrilaterals.	This is covered in a Geometry course.
MA.912.GR.3.AP. 4	Solve mathematical and/or real-world problems on the coordinate plane involving perimeter or area of a three- or four-sided polygon.	This is covered in a Geometry course.
Standard 4: Use geometric measurement and dimensions to solve problems.		
MA.912.GR.4.AP. 1	Identify the shape of a two-dimensional cross section of a threedimensional figure.	This is covered in a Geometry course.
MA.912.GR.4.AP. 2	Identify a three-dimensional object generated by the rotation of a two-dimensional figure.	This is covered in a Geometry course.
MA.912.GR.4.AP. 3	Select the effect of a dilation on the area of two-dimensional figures and/or surface area or volume of three-dimensional figures.	This is covered in a Geometry course.
MA.912.GR.4.AP. 4	Solve mathematical and/or real-world problems involving the area of triangles, squares, circles or rectangles.	SE/TE: 365-370, 385-390
MA.912.GR.4.AP. 5	Solve mathematical or real-world problems involving the volume of three-dimensional figures limited to cylinders, pyramids, prisms, or cones.	SE/TE: 327-344, 357-364
MA.912.GR.4.AP. 6	Solve mathematical or real-world problems involving the surface area of three-dimensional figures limited to cylinders, pyramids, prisms, and cones.	SE/TE: 44, 325, 334
Standard 5: Make formal geometric constructions with a variety of tools and methods.		
MA.912.GR.5.AP. 1	Construct a copy of a segment.	This is covered in a Geometry course.
MA.912.GR.5.AP. 2	Construct the bisector of a segment, including the perpendicular bisector of a line segment.	This is covered in a Geometry course.
MA.912.GR.5.AP. 3	Select the inscribed and circumscribed circles of a triangle.	This is covered in a Geometry course.

Standard	Descriptor	Citations
Standard 6: Use properties and theorems related to circles.		
MA.912.GR.6.AP. 1	Identify and describe the relationship involving the length of a secant, tangent, segment or chord in a given circle.	This is covered in a Geometry course.
MA.912.GR.6.AP. 2	Identify the relationship involving the measures of arcs and related angles, limited to central, inscribed and intersections of a chord, secants or tangents.	This is covered in a Geometry course.
MA.912.GR.6.AP. 3	Identify and describe the relationship involving triangles and quadrilaterals inscribed in a circle.	This is covered in a Geometry course.
MA.912.GR.5.AP. 4	Identify and describe the relationship involving the arc length and area of a sector in a given circle.	This is covered in a Geometry course.
Standard 7: Apply geometric and algebraic representations of conic sections.		
MA.912.GR.7.AP. 2	Create the equation of a circle when given the center and radius.	This is covered in a Geometry course.
MA.912.GR.7.AP. 3	Given an equation of a circle, identify center and radius, and graph the circle.	This is covered in a Geometry course.
Strand: TRIGONOMETRY		
Standard 1: Define and use trigonometric ratios, identities or functions to solve problems.		
MA.912.T.7.AP. 1	Select a trigonometric ratio for acute angles in right triangles limited to sine or cosine.	This is covered in a Geometry course.
MA.912.T.7.AP. 2	Given a mathematical and/or real-world problem involving right triangles, select a corresponding trigonometric ratio.	This is covered in a Geometry course.
Strand: DATA ANALYSIS AND PROBABILITY		
Standard 1: Summarize, represent and interpret categorical and numerical data with one and two variables.		
MA.912.DP.1.AP.1a	Given a set of data, select an appropriate table or graph to represent categorical data and whether it is univariate or bivariate.	$\begin{aligned} & \hline \text { SE/TE: } 167-176,531-540,541-548,549-558, \\ & 563-570,571-588 \end{aligned}$
MA.912.DP.1.AP.1b	Given a set of data, select an appropriate table or graph to represent numerical data and whether it is univariate or bivariate.	$\begin{aligned} & \text { SE/TE: } 167-176,531-540,541-548,549-558, \\ & 563-570,571-588 \end{aligned}$
MA.912.DP.1.AP. 2	Given a univariate or bivariate data distribution (numerical or categorical), identify the different components and quantities in the display.	$\begin{aligned} & \text { SE/TE: } 531-540,541-548,549-558,563-570, \\ & 571-588 \end{aligned}$ TE Only: 531A-531D

Houghton Mifflin Harcourt Florida's B.E.S.T. Into Algebra 1 ©2023 correlated to the Access Points to Florida's B.E.S.T. Standards: Mathematics, Grades 9-12 (2021)

| Standard | Descriptor | Citations |
| :---: | :--- | :--- | :--- |
| MA.912.DP.1.AP.3 | Identify whether the data is explained by correlation or causation in
 the contexts of both numerical and categorical data. | SE/TE: 167-176, 541-548 |
| MA.912.DP.1.AP.4 | Given the mean or percentage and the margin of error from a sample
 survey, identify a population total. | SE/TE: 589-594 |
| Standard 2: Solve problems involving univariate and bivariate numerical data. | | |
| MA.912.DP.2.AP.4 | Fit a linear function to a scatter plot that suggests a linear association.
 Identify the slope and ??-intercept of the model. | SE/TE: 167-176, 177-184 |
| MA.912.DP.1.AP.6 | Given a scatter plot with a line of fit, residuals, and correlation
 identify the strength and direction of the linear fit. | SE/TE: 177-184 |
| MA.912.DP.1.AP.8 | Given a scatter plot, select a quadratic function that fits the data the
 best. | SE/TE: 489-496 |
| MA.912.DP.1.AP.9 | Given a scatter plot, select an exponential function that fits the data
 the best. | SE/TE: 307-314 |
| Standard 3: Solve problems involving categorical data.: | SE/TE: 541-548, 549-558 | |
| MA.912.DP.3.AP.1 | When given a two-way frequency table summarizing bivariate
 categorical data, identify joint and marginal frequencies. | |
| Strand: LOGIC AND DISCRETE THEORY | This is covered in a Geometry course. | |
| Standard 4: Develop an understanding of the fundamentals of propositional logic, arguments and methods of proof. | | |
| MA.912.LT.4.AP.10 | Select the validity of an argument or give counterexamples to
 disprove statements. | This is covered in a Geometry course. |
| MA.912.LT.4.AP.3 | Identify and accurately interpret "if...then," "if and only if," "all" or
 "not" statements. | |

