Epic Scale

In this lesson, students solve a multi-step problem using ratio to scale measurements from a drawing to a life-sized sewing pattern.

CCSS CONNECTIONS

LANGUAGE SUPPORT

- Solve problems involving multiplication of fractions and mixed numbers. 5.NF.B. 6
- Understand ratios and describe ratio relationships between two quantities. 6.RP.A. 1
- Solve problems involving scale drawings of geometric figures. 7.G.A. 1

MATH TERMS
ratio
relationship between two numbers
scale factor ratio of the corresponding lengths in similar figures
ACADEMIC LANGUAGE
sewing pattern outline that is traced on fabric to create a garment
torso main part of the human body between the head and legs

SET UP

Introduce Chapter 2 from Math Meets Fashion.

Ask questions to review the video with students.
For example: What types of careers do you think there are in fashion? (fashion designer, costume designer, model, buyer) How does math relate to fashion? (Fashion designers use ratios and percentages to create patterns, budget, and make decisions about pricing.)
Review the definition of sewing pattern.
Today, we'll use a ratio to find the measurements of the life-sized pattern a costume designer will create based on his drawing of a cape.

Play Chapter 2: Epic Scale.

[Pause at 02:09.]

PLAN

Create a plan to solve the problem.

Drew is creating a pattern based on his drawing. The length of the torso in his drawing is 4 inches. The length of his mannequin's torso is 24 inches. Find the measurements for Drew's pattern so that it will fit his mannequin.

Read the problem aloud to students.
Guide students to analyze the quantities and look for entry points to solve the problem.

For example: What is the problem asking us to find? (the actual measurements for Drew's sewing pattern) What information do we have? (the lengths of the torso)
How can we find the measurements and label the pattern? (Find the ratio of the length of the torso in the drawing to the length of the mannequin's torso.)
Point out to students that the ratio of torso lengths can be applied to find all of the measurements for Drew's sewing pattern.
STANDARDS FOR
MATHEMATICAL
PRACTICE

Persevere and Solve Problems Students apply logical thinking to the information in the problem and plan a solution pathway.

Attend to Precision

Students carefully specify units of measure while labeling a scale model.

SOLVE

Have student pairs solve the problem as you circulate.

Encourage students to come up with multiple strategies, and represent the problem situation in different ways. Guide students to work backwards to check their work.

SUPPORT

Ask questions based on common errors to support student understanding.

- How many times larger is the mannequin than the drawing? How do you know?
- How does the torso ratio help you to generalize a solution strategy?
- How do you know where to label each measurement on the pattern?

EXTEND

Ask questions to encourage students to extend their thinking.

- What would happen if the scale factor was 5 ? Would the cape be larger or smaller?
- Do you have enough information to find the lengths of the other two sides of the pattern?
- Can you find the area of the pattern?

SHARE

Have students present their solutions.

Ask students from each pair to explain their solutions to the class. Show at least two different approaches to solving the problem, and one incorrect solution. To extend classroom discussion, call on students to explain the reasoning of the student who is presenting.

Possible student work:

$$
\begin{aligned}
& \frac{4}{24}=\frac{1}{6}=1: 6 \\
& b_{1} \rightarrow 4 \frac{1}{8} \mathrm{in} . \times 6=24 \mathrm{in} .+\frac{6}{8} \mathrm{in} . \\
&=24 \frac{3}{4} \mathrm{in} . \\
& n \rightarrow 4 \frac{3}{4} \mathrm{in} \times 6=24 \mathrm{in} .+\left(\frac{3}{4} \times 6\right) \mathrm{in} . \\
&=28 \frac{1}{2} \mathrm{in} . \\
& b_{2} \rightarrow 6 \mathrm{in} . \times 6=36 \mathrm{in} .
\end{aligned}
$$

Play the Chapter 2 Solution from Math Meets Fashion.
Have students complete the Practice and Reflect sections on Student Page 2.

HOMEWORK

 IDEASHave students create their own pattern!
Students create a pattern to fit themselves or a friend.

- What is the scale factor?
- Find all the measurements.
- Can you create a pattern that works for more than one size?
\qquad

MATH TERMS

ratio
relationship between two numbers
scale factor ratio of the
corresponding lengths in similar figures

Drew is creating a pattern based on his drawing. The length of the torso in his drawing is 4 inches. The length of his mannequin's torso is 24 inches. Find the measurements for Drew's pattern so that it will fit his mannequin.

PLAN

 Create a plan to solve the problem with your partner.SOLVE Use your plan to solve the problem.

\qquad

PRACTICE Apply your skills to solve another problem.

Drew creates a new pattern based on his original drawing.
The dimensions of the new pattern are $16 \frac{1}{2}$ inches, 19 inches, and 24 inches. What is the measurement ratio of the new pattern to Drew's original drawing?

REFLECT Explain how you made sense of the math.

How did you find the corresponding sides?
I found the corresponding sides by \qquad
\qquad
\qquad
\qquad

How are ratios and scale factors similar?
Ratios and scale factors are similar because \qquad
\qquad
\qquad
\qquad

MATH TERMS

ratio
relationship between two numbers
scale factor
ratio of the
corresponding lengths in similar figures

Drew is creating a pattern based on his drawing. The length of the torso in his drawing is 4 inches. The length of his mannequin's torso is 24 inches. Find the measurements for Drew's pattern so that it will fit his mannequin.

[^0] Create a plan to solve the problem with your partner.
\qquad

PRACTICE
 Apply your skills to solve another problem.

Drew creates a new pattern based on his original drawing. The dimensions of the new pattern are $16 \frac{1}{2}$ inches, 19 inches, and 24 inches. What is the measurement ratio of the new pattern to Drew's original drawing?

REFLECT Explain how you made sense of the math.

How did you find the corresponding sides?
I found the corresponding sides by \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: PLAN

