SNAPSHOT

Mathematical Standards

- Preskill: Explore multiplication of two whole numbers with products from 0 to 144, and related division facts.

Mathematical Practices and Processes

- Model with mathematics.
- Construct arguments and critique reasoning of others.
- Look for and make use of structure.

Learning Goal

Use multiplication and division to solve real world problems.

Language Objective

Students demonstrate to a partner how to solve multiplication and division problems.
MATERIALS

- MathBoard

ACROSS THE GRADES

Before	Grade 4	After
- Students will multiply two whole numbers with products from 0 to 144 and divide using related facts with procedural reliability.	- Students will multiply two whole numbers, up to three digits by up to two digits, with procedural reliability. - Students will divide a whole number up to four digits by a one-digit whole number with procedural reliability. Represent remainders as fractional parts of the divisor.	- Students will multiply multi-digit whole numbers including using a standard algorithm with procedural fluency. - Divide multi-digit whole numbers, up to five digits by two digits, including using a standard algorithm with procedural fluency. Represent remainders as fractions.

PROFESSIONAL DEVELOPMENT IN THE CLASSROOM

Formats for Classroom Discourse

Whole-Class Discussions are led by the teacher, who helps the class focus on higher-level concepts, mathematical reasoning, and making sense of new ideas. The teacher should clear up widely held misconceptions and tie past concepts to new thinking.
Small Groups of three to six students discuss ideas for solving the problem as a group and then with the teacher. This is a crucial time for the teacher to look for both conceptual and procedural errors. The teacher challenges group members to explain their strategies, whether correct or incorrect, for solving the problem.
Partners respond to each other's statements so that both partners put their thoughts into words. They practice contributing to the discussion and try to answer each other's questions. The teacher asks for clarification of their thinking and asks directional questions, focusing on identifying and helping the students resolve their own errors.

Social \& Emotional Learning

Working with partners and in groups is a key component of learning mathematics. These questions are designed specifically to support learning in a collaborative math classroom.

- Why might they say that? (for students who are struggling, to help them understand correct answers)
- How can you help them out? (for students who are on-target, to help students who are struggling)
- What can you add to what they're saying? (for incomplete answers)
- Do you think their answer is reasonable?
- What can you add to help them? (for incorrect answers)
- How can you repeat what they said using your own words? (to help students consider the reasoning of others)
- Can you reread the problem out loud? (when a student is disengaged, disruptive, or both)

Common Errors

with Multiplication and Division

Within this lesson:

- Students cannot identify compatible numbers.
- Students may not use the correct place value when finding the quotient.

In other lessons with multiplication and division:

- Students do not place a zero in the quotient.
- When dividing, subtraction produces a number that is greater than or equal to the divisor.
- Students may forget to add all of the partial quotients when using models and the Distributive Property to divide.
- Students may multiply by the regrouped number instead of adding it in the regrouping method.
For further information and tips on helping students understand and correct common errors, see individual lessons.

Launch Activity Multiplication and Division

Introducing Multiplication and Division

This Launch Activity lesson challenges students to use their prior knowledge of multiplication and division to solve problems about area. Students may use a variety of methods to model and solve the problem including basic facts and place value patterns. Students may also rely on counting to check their work. Remind them that the area for growing strawberries must be a rectangle.

Engage Students

Begin by discussing the opening topic. Invite students to participate by sharing what they know about farms or other topics that relate to the lesson, such as farm crops like rice, tree nuts, and sugarcane.
Students show an increased aptitude for learning if they are actively engaged in some part of the subject matter. Questions might include:

- Have you ever been to a farm?
- Have you seen a corn stalk?
- What other things are grown on farms?

Have students work in mixed-ability groups. Give each student a task that they can do well. For instance, in groups of learners with varying abilities, assign each student a specific task, such as leading the group discussion, recording or drawing the work, presenting (but not explaining) the solution, and explaining the models and methods used by the group to solve the problem. Division

Fascinating Farming

Corn is the most grown crop in the United States. But there are also many other types of crops grown on U.S. farms, such as cotton, soybeans, fruits and vegetables, and wheat. These crops are harvested for use in the U.S. and for export around the world.

Being a farmer is not easy! Extreme weather, pests, and disease can wipe out entire crops. A crop failure in one state is a problem for people around the world who rely on those crop harvests.

The next time you choose a piece of fruit or a vegetable, consider the farmer or farm family who might have grown it. Then considerwould you like to work on a farm?

Three Reads

First, read the story to understand the situation.

Next, read to understand the math.
Then, read to ask what mathematical questions could be asked about the situation.

A small family farm grows corn, cucumbers, strawberries, and tomatoes in an area that is a square. The sides of the square are 10 yards each. The square will be divided by 2 lines into 4 rectangles. Each crop will be grown in its own rectangle.

- There are about 2 million farms in operation in the United States.
- The average farm size is 444 acres.
- 96% of all U.S. farms are family farms.

Launch Activity • Multiplication and Division 7

Three Reads Language Routine

First Read The teacher reads the situation aloud. The students listen to understand the situation.

- What is the situation about?
- Can you describe the situation using your own words?

Second Read The students read the situation as a class or with partners. The students read to understand the math.

- What quantities are used in the situation?
- What are the connections between the quantities?

Third Read Each student reads the situation on their own. The student reads to think about possible math problems.

- What mathematical question could you ask about the situation?
- Can this question be answered using the information given?

Read the final question. Make a plan to solve the problem.

A small family farm grows corn, cucumbers, strawberries, and tomatoes in an area that is a square. The sides of the square are 10 yards each. The square will be divided by 2 lines into 4 rectangles. Each crop will be grown in its own rectangle.

Divide the area into 4 rectangles so that the space for growing strawberries is 48 square yards.

Write, model, or draw to solve the problem.

Students' modeling will vary. See the Teacher Edition for more in-depth explanations.

Discuss with a partner or in a group.

Using information from the rectangles you made, what equation can you write that equals 100? See possible answers in the margin.

ANSWERS

Main problem: Students should draw a rectangle with an area of 48 square units. They may use a variety of methods such as counting or multiplication and division facts to draw the rectangle.
Math Talk: Possible answer: $48+12+8+32=100$

Go Online

for the Interactive lesson

Prompts for Productive Perseverance

For Launch Activity lessons, the exploration of math concepts is more critical than finding a solution. Students should be encouraged to think about new math ideas in an atmosphere that is conducive to learning, with minimal pressure. They learn to solve the problem in different ways and are able to choose the method that works well for them.

What if students can't start working or can't enter into the conversation for this lesson? Use one or more of these opening prompts:

- What information do you know about the problem?
- Can you draw a picture that represents what you know?
- What numbers are in the problem?
- What is given in the problem that might help you answer the question?

How can I help students who are frustrated? Ask these leading questions:

- Think about a starting point. How can you enter into this problem?
- What information do you have?
- What are you working on? What have you done so far?
- What comes next? What are you solving for?
- What information do you need to get unstuck? Talk to your partner (or group).

To increase students' understanding of their own thinking, ask:

- How can you use multiplication and division facts to help you solve the problem?
- If the farm was partitioned into 4 equal parts, what would the area of each part be?

CHAPTER
 Chapter at a Glance Multiply by 1-Digit Numbers

	LESSON 3.1 - 1 Day	LESSON 3.2 • 1 Day
Lesson at a Glance	Multiplication Comparisons 77A	Comparison Problems 83A
I Can	I can use models and equations to solve multiplication comparisons.	I can draw models and write equations to help solve comparison problems.
Learning Goal	Relate multiplication equations and comparison statements.	Solve problems involving multiplicative comparison and additive comparison.
Vocabulary		
Multilingual Support	Strategy: Frontload	Strategy: Frontload
Practice and Fluency	LESSON 3.1 Practice and Homework Waggle Achieving Facts Fluency*	LESSON 3.2 Practice and Homework Waggle Achieving Facts Fluency*
MTSS RtI Intervention and Enrichment	Waggle Reteach 3.1 Tier 2 Intervention Skill S64 Tier 3 Intervention Skill E64 Tabletop Flipchart Enrich 3.1	Waggle Reteach 3.2 Tier 2 Intervention Skill S64 Tier 3 Intervention Skill E64 Tabletop Flipchart Enrich 3.2

LESSON 3.3 • 1 Day
Multiply Tens, Hundreds,
and Thousands 89A

I can use place value and other strategies to multiply tens, hundreds, and thousands.

Multiply tens, hundreds, and thousands by whole numbers through 10 .

Strategy: Scaffold Language

LESSON 3.3

- \quad Practice and Homework

■ Waggle

- Achieving Facts Fluency*

Waggle

- ■ Reteach 3.3
-■ Tier 2 Intervention Skill S67
- \quad Tier 3 Intervention Skill E67
- Tabletop Flipchart

Enrich 3.3

See the Grab-and-Go! ${ }^{\text {TM }}$ Centers Kit for more small-group activities.

Grab Go!'

Version 2.0

Differentiated Centers Kit
The kit provides literature, games, and activities for small-group learning.

Print/Printable Resource
75A Go Math! Grade 4

Chapter Pacing Chart			
Introduction	Instruction	Assessment	Total
1 day	11 days	2 days	14 days

	LESSON 3.4 • 1 Day	LESSON 3.5 • 1 Day	LESSON 3.6 • 1 Day
Lesson at a Glance	Estimate Products by 1-Digit Numbers 95A	Multiply Using the Distributive Property 101A	Multiply Using Expanded Form 107A
I Can	I can estimate products by rounding and determine if exact answers are reasonable.	I can use models, equations, and the Distributive Property to solve 2-digit by 1-digit multiplication problems.	I can use expanded form to multiply a multi-digit number by a 1 -digit number.
Learning Goal	Estimate products by rounding and determine if exact answers to multiplication problems are reasonable.	Use the Distributive Property to multiply a 2 -digit number by a 1 -digit number.	Use expanded form to multiply a multidigit number by a 1 -digit number.
Vocabulary		area model, Distributive Property, partial product	
Multilingual Support	Strategy: Illustrate Understanding	Strategy: Identify Relationships	Strategy: Frontload
Practice and Fluency	LESSON 3.4 Practice and Homework Waggle Achieving Facts Fluency*	LESSON 3.5 Practice and Homework Waggle Achieving Facts Fluency*	LESSON 3.6 Practice and Homework Waggle Achieving Facts Fluency*
MTSS RtI Intervention and Enrichment	Waggle Reteach 3.4 Tier 2 Intervention Skill S68 Tier 3 Intervention Skill E68 Tabletop Flipchart Enrich 3.4	Waggle Reteach 3.5 Tier 2 Intervention Skill S69 Tier 3 Intervention Skill E69 Tabletop Flipchart Enrich 3.5	Waggle Reteach 3.6 Tier 2 Intervention Skill S61 Tier 3 Intervention Skill E61 Tabletop Flipchart Enrich 3.6

[^0]
CHAPTER Multiply by 1-Digit Numbers

 Chapter at a Glance}

 Chapter at a Glance}| | LESSON 3.7 • 1 Day | LESSON 3.8 - 1 Day |
| :---: | :---: | :---: |
| Lesson at a Glance | Multiply Using Partial Products 113A | Multiply Using Mental Math \qquad |
| I Can | I can use different strategies such as place value and partial products to multiply by a 1-digit number. | I can multiply numbers using mental math and properties of operations. |
| Learning Goal | Use place value and partial products to multiply a multi-digit number by a 1 -digit number. | Use mental math and properties to multiply a multi-digit number by a 1 -digit number. |
| Vocabulary | | |
| Multilingual Support | Strategy: Cooperative Grouping | Strategy: Scaffold Language |
| Practice and
 Fluency | LESSON 3.7
 - ■ Practice and Homework
 - Waggle
 - Achieving Facts Fluency* | LESSON 3.8
 - \quad Practice and Homework
 - Waggle
 - Achieving Facts Fluency* |
| MTSS RtI
 Intervention
 and
 Enrichment | \quad Waggle Reteach 3.7 - Tier 2 Intervention Skill S70 - Tier 3 Intervention Skill E70 Tabletop Flipchart Enrich 3.7 | Waggle Weteach 3.8 - Tier 2 Intervention Skill S60 ■ Tier 3 Intervention Skill 660 Enrich 3.8 |

LESSON 3.9 - 1 Day
 Multi-Step Multiplication Problems. 125A

I can solve real-world problems involving multiplication of whole numbers.

Use the draw a diagram strategy to solve multi-step problems.

Strategy: Frontload

LESSON 3.9

- \square Practice and Homework
- Waggle

Achieving Facts Fluency*

Waggle

Reteach 3.9

- Tier 2 Intervention Skill 592

Tier 3 Intervention Skill E92
Enrich 3.9

	LESSON 3.10 • 1 Day	LESSON 3.11 - 1 Day
Lesson at a Glance	Multiply 3-Digit and 4-Digit Numbers with Regrouping. 131A	Solve Multi-Step Problems Using Equations 137A
I Can	I can multiply whole numbers using estimation, rounding, and place value.	I can solve real-world multi-step problems using multiplication, addition, and subtraction.
Learning Goal	Use regrouping to multiply a multi-digit number by a 1 -digit number.	Solve real-world multi-step problems using multiplication, addition, and subtraction.
Vocabulary		
Multilingual Support	Strategy: Frontload	Strategy: Identify Relationships
Practice and Fluency	LESSON 3.10 \square Practice and Homework - Waggle Achieving Facts Fluency*	LESSON 3.11 Practice and Homework Waggle Achieving Facts Fluency*
MTSS RTI Intervention and Enrichment	Waggle Reteach 3.10 Tier 2 Intervention Skill S72 Tier 3 Intervention Skill E72 Tabletop Flipchart Enrich 3.10	Waggle Reteach 3.11 Tier 2 Intervention Skill S92 Tier 3 Intervention Skill E92 Tabletop Flipchart Enrich 3.11

Using Strategies

Students should be encouraged to use their own strategies as long as they understand the strategy and it makes sense mathematically.

- Students who understand multiplication are flexible in choosing the best strategy.
- Compensation is a particularly useful strategy that makes use of mental math. For example, 9×17, can be thought of as 10×17, with a group of 17 subtracted.
- Students who use this strategy demonstrate a deep understanding and make connections to basic multiplication facts, multiples, and properties of numbers, such as the Distributive Property.

Generalizing Ideas

To promote algebraic reasoning, the focus of math talk needs to shift from sharing strategies to an emphasis on detailing the reasoning around whether a mathematical idea is always true and under what conditions (Franke, Carpenter, \& Battey, 2008).

- Studying properties of numbers is one way to build students' ability to generalize.
- As students develop a conceptual understanding of the meaning of multiplication and develop strategies to solve multiplication problems, they will begin to use properties such as the Distributive Property (Schifter, 1999).

From the Research

${ }^{66}$ As students develop methods to solve multidigit computation problems, they should be encouraged to record and share their methods. As they do so, they can learn from one another, analyze the efficiency and generalizability of various approaches, and try one another's methods." (NCTM, 2000, p. 153)

Using an Area Representation

The area model is one representation that research indicates builds student conceptual understanding of two-digit multiplication (Fuson, 2003).

- This model helps students make mathematical connections by making use of place value, expanded notation, number partitioning, basic fact concepts, and the Distributive Property.

- The large rectangle can be thought of as 9 rows of 17 . The smaller rectangles represent the partial products for multiplying the factors.

Mathematical Practices and Processes

Construct arguments and critique reasoning of others.

Students should have opportunities to explore different strategies for multiplication. This builds meaning for the operation and contributes to their fluency in the operation. Further, discussing their strategies allows them to share ideas and build more understanding. These experiences help students to use abstract and quantitative reasoning.

For more professional learning, go online to Teacher's Corner.

Instructional Journey

While every classroom may look a little different, this instructional model provides a framework to organize small-group and whole-group learning for meaningful student learning.

Assessment		
Diagnostic	Formative	Summative
• Show What You Know	•台	

Grab-6.Go!"

Version 2.0

Differentiated Centers Kit
The kit provides literature, games, and activities for small-group learning.

Assessing your student's understanding of mathematical concepts can be done by listening, speaking, reading, and writing. The level of support a student needs determines how best to assess that student's understanding of mathematical concepts and will help meet the needs of all your students.

Planning for Instruction

Language Support	Substantial (WIDA Level 1)*	Moderate (WIDA Levels 2 \& 3)*	Light (WIDA Levels 4 \& 5)*
Student's Use of Language	- uses single words - uses common short phrases - heavily relies on visual supports and use of manipulatives	- uses single words - uses some academic vocabulary - relies on visual supports and use of manipulatives	- uses a variety of sentences - uses academic vocabulary - benefits from visual supports and manipulatives
Ways to Assess Understanding	Listening: points to pictures, words, or phrases to answer questions Speaking: answers yes/no questions Reading: matches symbols to math terms and concepts Writing: draws a visual representation of a problem	Listening: matches, categorizes, or sequences information based on visuals Speaking: begins to explain reasoning, asks math questions, repeats explanations from peers Reading: identifies important information to solve a problem Writing: uses simple sentences and visual representations	Listening: draws conclusions and makes connections based on what they heard Speaking: explains and justifies concepts and solutions Reading: understands information in math contexts Writing: completes sentences using some academic vocabulary

* For more information on WIDA Standards, visit their website at:
https://wida.wisc.edu/.
- Look for strategies throughout the lesson to support multilingual learners.
- Log on to ED to find additional multilingual activities and Vocabulary Cards.

In This Chapter

Key Academic Vocabulary

Current Development - Vocabulary

area model, Distributive Property, partial product

Using Language Routines to Develop Understanding

Language routines provide opportunities for students to develop an understanding of mathematical language and concepts by listening, speaking, reading, and writing. More information on these language routines can be found on the Language Support Cards.

Three Reads

Students read a problem three times with a specific focus each time.
1 What is the situation about?
2 What are the quantities in the situation?
3 What are possible mathematical questions that you could ask for the situation?

Language Support	Substantial (WIDA Level 1)*	Moderate (WIDA Levels 2 \& 3)*	Light (WIDA Levels 4 \& 5)*
Language Routine Differentiation	Students read a problem three times with a proficient partner with scaffolded questions. 1 What is the problem about? 2 What do each of the numbers describe? 3 What math questions could you ask about the problem?	Students read a problem three times with a proficient partner with scaffolded questions. 1 What is the problem about? 2 What do each of the numbers describe? 3 What math questions could you ask about the problem?	Students engage in the language routine with proficient peers. Monitor to provide additional support if required (example: clarify meaning of vocabulary within the guiding questions).
Possible Student Work A bike store rented 200 bikes in April and May. The store rented 300 bikes each month from June through September. How many bikes did the store rent during these months?	Possible Student answers: 1. renting bikes 2. number of bikes 3. How many bikes?	Possible Student answers: 1. A store renting bikes 2. the number of bikes rented 3. How many bikes were rented?	Possible Student answers: 1. A store renting a certain number of bikes a month, 2. 200 bikes in April and in May; 300 bikes each month June through September. 3. How many total bikes did the store rent?

[^1]
Assessing Prior Knowledge

Use Show What You Know to determine if students need intensive or strategic intervention.

MATH in the

The Arctic Lion's Mane Jellyfish is found only in the cold waters of the Arctic, northern Pacific, and northern Atlantic oceans.
Ask:

- What is your height to the nearest foot? Possible answer: 4 feet
- How does 120 feet compare to your height? Explain. Possible explanation: 120 feet is 30 times as long as 4 feet. I thought, " 4 times what number equals 120?" To find the answer, I used a basic fact and a pattern. $3 \times 4=12.30 \times 4=120$.

Multiply by 1-Digit Numbers

Show What You Know

- Arrays Write a multiplication sentence for the array.

- Multiplication Facts Find the product.

3. $54=9 \times 6$
4. $56=7 \times 8$
5. $8 \times 4=\underline{32}$
\rightarrow Regroup Through Thousands
Regroup. Write the missing numbers.
6. 9 tens 10 ones $=1$ hundred
7. 60 hundreds $=6$ thousands
8. 25 tens $=2$ hundreds 5 tens
9. 14 ones $=\underline{1}$ ten $\quad 4$ ones
10. 3 tens 12 ones $=\quad 4$ tens 2 ones

MATH in the Road

The Arctic Lion's Mane Jellyfish is one of the largest known animals. Its tentacles can be as long as 120 feet. Find how this length compares to your height. Round your height to the nearest foot. 120 feet is
times as long as \qquad feet.

Possible answers: 30; 4

Chapter 375

Show What You Know • Diagnostic Assessment

Use to determine if students need intervention for the chapter's prerequisite skills.

Were students successful with intervene Show What You Know?				If YES ... then use INDEPENDENT ACTIVITIES
	Skill	Missed More Than	Intervene With	Grab and Go! Version 2.0 Differentiated Centers Kit Use the Reteach or Enrich Activities online or the independent activities in the Grab-and-Go 2.0™ Differentiated Centers Kit.
TIER 3	Arrays	0	Intensive Intervention Skill E59	
TIER 2	Multiplication Facts	1	Strategic Intervention Skill S62	
TIER 2	Regroup Through Thousands	1	Strategic Intervention Skill S6	

Vocabulary Builder

- Visualize It

Complete the flow map, using the words with a \checkmark.
Multiplying

- Understand Vocabulary

Complete the sentences.

1. The Distributive Property
_ states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products.
2. A number that is multiplied by another number to find a product
is called a \qquad factor
3. A method of multiplying in which the ones, tens, hundreds, and so on are multiplied separately and then the products are added together is called the \qquad partial product method

Review Words

\checkmark estimate
expanded form
factor
\checkmark place value
product
\checkmark regroup \checkmark rounding

Preview Words

 Distributive Property partial product
Vocabulary Builder

Have students complete the activities on this page by working alone or with partners.

$>$ Visualize It

The flow map organizes several methods of multiplying and shows how to use each one with appropriate examples. Place the word(s) to show "What can you do?" in each box to the left. Follow the arrows and place each method you can use in the next box. Look at the examples in the boxes to the right to help you.

Understand Vocabulary

 Introduce the new and review words for the chapter. Students can enhance their understanding of key chapter vocabulary through the use of the VOCABULARY CARDS. Have students cut out the cards and create their own deck of terms. You can use these cards to reinforce knowledge and reading across the content areas.

School-Home Letter is available in English and Spanish online, and in multiple other languages.

Intervention Options MTSS RtI Response to Intervention

Use Show What You Know, Lesson Quick Check, and Assessments to diagnose students' intervention levels.

Lesson at a Glance

 Multiplication Comparisons
SNAPSHOT

Mathematical Standards

- Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
- Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Mathematical Practices and Processes

- Attend to precision.
- Construct arguments and critique reasoning of others.
- Look for and make use of structure.

I Can Objective

I can use models and equations to solve multiplication comparisons.

Learning Goal

Relate multiplication equations and comparison statements.

Language Objective

Students use manipulatives to show and explain how you can model multiplication comparisons.

MATERIALS

- MathBoard

ACROSS THE GRADES

Before	Grade 4	
Solve one- and two-step real-world problems involving any of four operations with whole numbers.	Solve real-world problems involving multiplication and division of whole numbers including problems in which remainders must be interpreted within the context.	Solve multi-step real-world problems involving any combination of the four operations with whole numbers, including problems in which remainders must be interpreted within the context.

ABOUT THE MATH

Look for and make use of structure.

Mathematically proficient students use models to solve real-world problems. In this lesson, students represent multiplication comparisons using a bar model. Students are given a problem:

Carly has 9 pennies. Jean has 4 times as many pennies as Carly. How many pennies does Jean have?
Students must understand that they are comparing the number of pennies Carly has with the number of pennies

Jean has. In the model, a single box with 9 written inside represents Carly's pennies, and 4 same-sized boxes with 9 written inside represent Jean's pennies since he has 4 times as many.
Students then use the model to write and solve an equation: n, the number of pennies Jean has, equals 4 times as many as 9 , or $n=4 \times 9$. So, $n=36$.
By drawing models and translating between equations and verbal statements, students are able to interpret relationships and solve problems.

DAILY ROUTINES

Problem of the Day 3.1

Antonio sees some sea stars at the aquarium. Each sea star has 5 legs. Antonio counts 30 legs in all. How many sea stars does he see? 6 sea stars

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Materials Digit Cards (1-9)
Mental Math Have pairs practice their multiplication facts. Give partners two sets of digit cards (1-9). Have students shuffle the cards and place them facedown in a single pile on the table. Students take turns turning over two cards and finding the product of the two numbers.

Have students shuffle the cards and play again.

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Review using the Commutative Property of Multiplication as a strategy to find products. Write the following problems on the board in two columns. Have students find the products.
$3 \times 6=$ \qquad 18
$6 \times 3=$ \qquad 18
$7 \times 8=$ \qquad $8 \times 7=$ \qquad 56
$9 \times 4=\ldots \quad 364 \times 9=\ldots \quad 36$
$5 \times 2=$ \qquad 10
$2 \times 5=$ \qquad 10

- How can the first problem in the row help you find the product of the second problem in the row? Possible answer: The factors are the same but in a different order. The Commutative Property states that you can change the order of the factors and the product stays the same, so I can use my first answer as my answer to the second problem.

with the Interactive Student Edition

I Can Objective

I can use models and equations to solve multiplication comparisons.

Making Connections

Ask students to think about comparing amounts when one amount is 2 times as many as another.

- What does it mean if your friend has 2 times as many as you have? Possible answer: Two times as many is twice as many or double the number. If I have 4, my friend has 8.
- What operation would you use in an equation to find 2 times as many? Possible answer:
multiplication; the phrase two times as many as indicates that you should multiply by 2.

Learning Activity

Ask the following questions.

- Suppose you have 3 pencils. Your friend has 4 times as many pencils as you. How can you find the number of pencils your friend has? Explain. Possible explanation: the phrase 4 times as many as indicates that you should multiply by 4. Multiply 4×3.
- What equation could you write to show the number of pencils in the problem? Possible answer: $4 \times 3=n$.

(2) Explore

Review the bar models, making sure students see that 15 is 3 times as many as 5 and 15 is also 5 times as many as 3 .

Unlock the Problem

Read and discuss the problem, making sure students understand how the bar model represents the problem and how to use the model to write and solve an equation.

- What quantities are you comparing? the number of pennies Carly and Jean have
- What does the single box next to Carly represent? Carly's 9 pennies
- Why are there 4 boxes next to Jean? Possible answer: Each box represents 9 pennies. Jean has 4 times as many pennies as Carly, so you need 4 boxes
- How does the model help you solve the problem? Possible answer: The model helps me compare the number of pennies Carly and Jean have. I see Jean has 4 times as many pennies as Carly has, or $4 \times 9=36$ pennies.

Construct arguments and critique reasoning of others.

Math

Talk Use the Math Talk to focus on students' understanding of multiplication comparisons.

Students compare additive and multiplicative comparisons.

- How do you know that the statement "4 is 2 times as many as 2 " is a comparison involving multiplication? Possible answer:
because I can write the multiplication equation, $4=2 \times 2$, to show the comparison

Name

Multiplication Comparisons

(I Can use models and equations to solve multiplication comparisons.
You can use multiplication to compare amounts. For example, you can think of $15=3 \times 5$ as a comparison in two ways:

Math Talk: Possible answer: Carly's pennies are being compared to Jean's pennies. The model shows Carly has 9 pennies, and Jean has 4 times as many as 9 pennies, or 4×9 pennies. Since the total number Jean

The Commutative Property states that you can multiply two factors in any order and get the same product.

Chapter 3•Lesson 177

ML
 Multilingual Support

STRATEGY: Frontload

Model how to state a comparison sentence for a multiplication equation.

- Write on the board: $28=7 \times 4$.
- Point to each part of the equation as you say 28 is 7 times as many as 4. Have students practice by repeating after you.
- Write other multiplication equations on the board.
- Put students in groups and have them practice saying them.

Try This! Write an equation to solve.
Rabbit food costs $\$ 4$ and dog food costs $\$ 16$. How many times as much does the dog food cost as the rabbit food?
How much does the rabbit food cost? \$4 $\quad 16=n \times 4$
How much does the dog food cost? \$16
How many times as much does the dog food cost The value of n is 4 as the rabbit food?

This is the unknown. Use n for the unknown.

Ready for More

(D) Visual Partners

Materials index cards

- Give each student 3 index cards.
- Have each partner write comparison multiplication problems, such as "Sue has 6 times as many trophies as Bob. Bob has 5 trophies. How many trophies does Sue have?" on each of their index cards.
- Have students trade index cards with their partner. Students draw a model and write and solve an equation for each problem on the back of the index card.
- Partners trade index cards again and check each other's work.

Example

Work through the problem with students. This time the unknown is the lesser quantity in the comparison situation.

- How can you model how many rabbits Sara has? Possible answer: Use the single box and write n inside to show that the number of rabbits she has is unknown.
- How can you model how many rabbits

Miguel has? Use the 3 boxes to represent the number of rabbits Miguel has, 6 . There are 3 boxes because he has 3 times as many rabbits as Sara. Write n inside each box to show the number is unknown.

- How can you record an equation to represent the model? Possible answer: 6 is 3 times as many as n, or $6=3 \times n$.
- How does this example compare to the Unlock the Problem example on page 39?
Possible answer: In the first example, you were finding the greater quantity being compared. In this example, you are finding the lesser quantity.

Try This!

Translating a comparison sentence into an equation and an equation into a comparison sentence are important skills for understanding and solving real-world problems. Have students explain their thinking.

(3) Explain

Share and Show Math

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

MP Attend to precision.

Use Math Talk to help students recognize that the multiplication equation can be written in a different way by writing the variable on the right side of the equation.

- How else could the equation be written

 so that the value of n would be the same?Write the variable on the right side of the equation as $3 \times 8=n$

Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

Quick Check MTSS (RTI

If
a student misses the checked problems

Then Differentiate Instruction with

- Reteach 3.1
- Waggle

Attend to precision.

Have students use Problem 4 to draw and compare models representing $108=9 \times 12$ and $108=12 \times 9$.

- Compare the two models. How are they alike? How are they different? Possible answer: They are alike because both models represent the same product, 108. The models look different. The model for $108=9 \times 12$ shows a single box with 12 inside below 9 boxes of the same size with 12 inside. It means 108 is 9 times as many as 12 . The model for $108=12 \times 9$ shows a single box with 9 inside below 12 boxes of the same size with 9 inside. It means 108 is 12 times as many as 9 .

On Your Own

If students complete the checked problems correctly, they may continue with the remaining problems.

MP Construct arguments and critique reasoning of others.

Problem 10 If students are having difficulty getting started, suggest that they write the equation as a comparison sentence.

Common Errors

Error Students may write incorrect equations in Problems 2-3.
Example For Problem 2, students may write $6=2 \times 12$.

Springboard to Learning Have students write a multiplication sign for "times as many as" and an equal sign for "is."

Draw a model and write an equation.
2. 6 times as many as 2 is 12 .

$6 \times 2=12$
3. 20 is 4 times as many as 5 .

20			
5	5	5	5
5			

$20=4 \times 5$

Write a comparison sentence.

$$
\begin{aligned}
& \text { 4. } 108=9 \times 12 \\
& \quad 108 \text { is } \quad 9 \quad \text { times as many as } \quad 12 \\
& \hline
\end{aligned}
$$

(d) 5. $8 \times 4=32$

8 times as many as 4 is 32.

On Your Own

Write a comparison sentence.
6. $5 \times 7=35$

5 times as many as 7 is 35

$$
\text { 7. } 99=11 \times 9
$$

99 is 11 times as many as $\quad 9$.
8. One week, Alexi and Silvia collected canned goods for a food drive. On Monday, Alexi collected 4 boxes and Silvia collected 2 boxes. At the end of the week, Alexi had 3 times as many boxes as he had on Monday. Silvia had 4 times as many boxes as she had on Monday. Together, how many boxes of canned goods did they have at the end of the week?

20 boxes
9. Cooper has 14 goldfish. Nando has 7 goldfish. Write an equation to show how many times as many goldfish Cooper has than Nando.
10. MP) Write a comparison sentence about pet food that could be represented using the equation $12=4 \times 3$.

Possible problem: Mr. Campano bought
12 cans of pet food, which is 4 times as
many as 3 cans of pet food.

Chapter 3•Lesson 179

Meeting Individual Needs

11. Luca has 72 baseball cards. Han has 9 baseball cards. How many times as many baseball cards does Luca have as Han has?
a. What do you need to find? I need to find how many
times as many baseball cards Luca has as Han has.
b. How can you use a model to find the number of cards Han has?

I can draw a comparison model.
c. Draw the model.

d. Write an equation and solve.
$72=\underline{n} \times \underline{9}$
$n=-8$
So, Luca has 8 times as many baseball cards as Han has.
12. Complete the statements to describe each model.

4

6

(4) Elaborate

Unlock the Problem

Problem 11 Work through the scaffolded problem with students to help them focus on how to use a model to solve a comparison problem. Direct students to Step c.

- How can you represent the number of cards Han has in the model? Since Han has 9 cards, draw one box and write a 9 in it to represent his cards.
- How can you represent the number of cards Luca has? Since Luca has 72 cards, draw boxes of the same size and write 9 in each. Draw boxes until they add up to 72 to represent Luca's cards.

Problem 12 This problem assesses students' understanding of multiplication comparisons. Students who cannot correctly interpret the model may not understand what each number represents. Point out to students what each box represents. Explain that the top boxes represent how many "times as many" the boxes on the bottom.

Formative Assessment

I Can Objective

Have students use manipulatives to show and explain to demonstrate the skill for the I Can statement.

I can use models and equations to solve multiplication comparisons by . . . using a bar model to represent the two quantities being compared. For example, $16=2 \times 8$ means 16 is 2 times as many as 8 .
The model shows a single box with 8 inside below 2 boxes of the same size with 8 inside.

Exit Ticket

Draw a model, and write an equation to represent " 4 times as many as 3 is 12." Explain your work.

Readers

Supports key math skills and concepts in real-world situations.

Games

Reinforce math content and vocabulary

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Activities

Meaningful and fun math practice

Practice and Homework

Multiplication Comparisons

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine students' understanding of content for this lesson.

Name
LESSON 3.1 Practice and Homework

Multiplication Comparisons

Write a comparison sentence.

1. $6 \times 3=18$
6 times as many as 3 is 18 .
2. $63=7 \times 9$
63 is 7 times as many as 9.
3. $5 \times 11=55$
5 times as many as ${ }^{11}$ is ${ }^{55}$.
4. $48=8 \times 6$
48 is 8 times as many as 6.

Write an equation.

5. 2 times as many as 8 is 16 .
6. 42 is 6 times as many as 7 .

$$
2 \times 8=16
$$

7. 3 times as many as 5 is 15 .
$3 \times 5=15$
8. 36 is 12 times as many as 3 . $36=12 \times 3$

Problem Solving

9. Metin is 14 years old. Zeki is 7 years old. How many times as old as Zeki is Metin?

2 times
10. There are 27 campers. This is nine times as many as the number of counselors. How many counselors are there?
\qquad
3 counselors
11. Write Math Draw a model, and write an
equation to represent " 4 times as many as 3 is 12 ."
Explain your work.

Check students' work

Lesson Check

12. Write an equation that represents this comparison sentence.

24 is 4 times as many as 6 .
13. Write a comparison sentence that represents this equation.

$$
5 \times 9=45
$$

\qquad Possible answer: 5 times as many as
9 is 45.

Spiral Review
14. Which symbol makes the following statement true?

$$
547,098<574,908
$$

15. What is the standard form for $200,000+80,000+700+6$?
\qquad
16. Rochelle ran 13 miles in one week. She ran 4 more miles than that the following week. How many miles did she run in all? Leona scored 19,326 points more than Sean. How many points did Leona score?

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance

Comparison Problems

SNAPSHOT

Mathematical Standards

- Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
- Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Mathematical Practices and Processes

- Attend to precision.
- Construct arguments and critique reasoning of others.
- Look for and make use of structure.

I Can Objective

I can draw models and write equations to help solve comparison problems.

Learning Goal

Solve problems involving multiplicative comparison and additive comparison.

Language Objective

Students write how a model can help solve a comparison problem.

MATERIALS

- MathBoard

ACROSS THE GRADES

Before	Grade 4	
Solve one- and two-step real-world problems involving any of four operations with whole numbers.	Solve real-world problems involving multiplication and division of whole numbers including problems in which remainders must be interpreted within the context.	Solve multi-step real-world problems involving any combination of the four operations with whole numbers, including problems in which remainders must be interpreted within the context.

ABOUT THE MATH

Why Teach This

In this lesson, students encounter two types of comparison problems: multiplicative comparison and additive comparison. Students learn how to draw bar models and write algebraic equations to solve both types of comparison problems.

In multiplicative comparison, one quantity is a certain number of times as much or times as many as another quantity.

Additive comparison problems compare a given greater quantity and a given lesser quantity, asking how much more/how many more or how much less/how many fewer? In this case, the unknown quantity is the difference between two given quantities.

Students' work with comparison situations helps them identify when to use multiplication or subtraction to solve real-world comparison problems.

DAILY ROUTINES

Problem of the Day 3.2

A new sports stadium has 5,900 seats. Elena said that she could rename the number of seats as 4 thousands and some hundreds. How many hundreds does Elena need to write in the name for 5,900? 19 hundreds

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Multiplication Facts Write the following examples on the board. Have students practice multiplication facts by finding the products and checking answers with a partner.
$3 \times 4=12$
$9 \times 5=45$
$7 \times 2=14$
$5 \times 6=30$
$4 \times 10=40$
$8 \times 7=56$
$2 \times 3=6$
$1 \times 9=9$
$6 \times 8=48$
$8 \times 1=8$
$3 \times 6=18$
$9 \times 9=81$

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Discuss real-world comparison problems that involve multiplication or subtraction. Review the related bar models.

- How many more windows than bookcases are in our classroom?
Have students explain how they found the answer. Then show how to draw a bar model to represent and solve the problem. Possible drawing given.

$6-4=2 ; 2$ more windows than bookcases

Social \& Emotional Learning

Responsible Decision-Making During with students the importance of making decisions independently. There are times when you work on your own and you must make decisions. What can you do to feel confident in making a decision? Do you think about what you know that can be useful in making the decision? Can you compare it to other times when you have made a decision? Working on your own and making decisions independently can be empowering and show that you are confident in your knowledge and skills.
with the Interactive Student Edition

I Can Objective

I can draw models and write equations to help solve comparison problems.

Making Connections

Ask students to tell you what they know about multiplication comparisons.

- What does the equation $24=3 \times 8$ tell you about how 24 relates to 3 and 8? Possible answer: 24 is 3 times as many as 8 .
- What phrase in a comparison sentence suggests a multiplication comparison? an addition comparison? Possible answer: 5 times as many as suggests multiplication. 5 more than suggests addition.

Learning Activity

Ask the following question.

- How would you draw a model to represent this problem? Ken has \$5. Mark has 3 times as much money as Ken. How much money does Mark have? Check students' models; Mark has \$15.
- How can you find the total amount both boys have? Possible answer: Add the two amounts: $\$ 5+\$ 15=\$ 20$.

(2) Explore

Unlock the Problem

Have a volunteer read the problem aloud.

Example 1

Discuss the bar model.

- Why are there 7 boxes for the weight of Evan's dog? Evan's dog weighs 7 times as much as Oxana's dog, and 7 boxes shows 7 times as much as 1 box.
- What does the letter \boldsymbol{n} stand for? the unknown weight of Oxana's dog

MP) Attend to precision.

In Step 2, make sure students understand that they should write an equation to match the bar model.

- Where does the number 8 come from in the multiplication equation? There are 8 boxes in the model: 7 boxes for Evan's dog and 1 box for Oxana's dog. All of the boxes make up 8 equal groups that make up the total weight, 72 pounds.
Discuss the idea that this problem involves multiplication comparison.
- What are you comparing in this problem?

Possible answer: the weight of Evan's dog to the weight of Oxana's dog

- Why is multiplication used to solve this problem? Possible answer: the problem says that one dog weighs " 7 times as much as" the other dog.

MP) Construct arguments and critique reasoning of others.

Math

Talk
Use Math Talk to check that students' answers match the information given in the problem.

- If your answer is correct, what two facts must be true? The weight of Evan's dog is 7 times the weight of Oxana's dog. The total weight of Evan's dog and Oxana's dog is 72 pounds.

Comparison Problems

(I Can draw models and write equations to help solve comparison problems.

\#UNLOCK the Problem fixid

Evan's dog weighs 7 times as much as Oxana's
dog. Together, the dogs weigh 72 pounds.
How much does Evan's dog weigh?
Example 1 Use a multiplication model.
STEP 1 Draw a model. Let n represent the unknown.
Think: Let n represent how much Oxana's dog weighs. Together, the dogs weigh 72 pounds.

STEP 2 Use the model to write an equation. Find the value of n.

$$
\begin{array}{ll}
8 \quad \times n=\underline{72} & \text { Think: There are } 8 \text { parts. The parts together equal } 72 . \\
8 \times \quad 9 & =72
\end{array} \text { Think: } 8 \text { times what number equals } 72 ?
$$

The value of n is 9 .
n is how much Oxana's dog weighs.
STEP 3 Find how much Evan's dog weighs.
Think: Evan's dog weighs 7 times as much as Oxana's dog.
Evan's dog $=\ldots \quad \times \quad$ Multiply
$=63$
So, Evan's dog weighs 63 pounds.
Possible explanation: my answer matches the information given in the problem. Oxana's dog weighs 9 pounds. Evan's dog weighs 63 pounds. $9+63=72$, the total weight of both dogs. 63 pounds is 7 times as much as 9 pounds since $7 \times 9=63$

ML
 Multilingual Support

STRATEGY: Frontload

Have students follow in their book as you read a word problem aloud.

- Ask questions to help students figure out how to draw a model to help them with the process of solving a word problem.
- After you have helped students draw a model, put them in pairs and have them discuss their model with a partner.

To find how many times as much, use a multiplication model. To
find how many more or fewer, model the addition or subtraction find how many more or fewer, model the addition or subtraction.

Evan's dog weighs 63 pounds. Oxana's dog weighs 9 pounds. How much more does Evan's dog weigh than Oxana's dog?

Example 2 Use an addition or subtraction model. STEP 1 Draw a model. Let n represent the unknown.

n

STEP 2 Use the model to write an equation. Find the value of n.

$\frac{63}{63}-\frac{9}{9}-9$	Think: The model shows a difference.	
63		Subtract.

n is how much more Evan's dog weighs
Math Talk: Possible

$$
\text { The value of } n \text { is } 54
$$ explanation: I need to think about whether I am finding how many times as much or how many more or fewer.

So, Evan's dog weighs 54 pounds more than Oxana's dog.

Share and Show Moth

Maria's dog weighs 6 times as much as her rabbit. Together, the pets weigh 56 pounds. What does Maria's dog weigh?

Draw a model. Let n represent the unknown.

Multiply to find how much Maria's dog weighs. $8 \times 6=\underline{48}$
So, Maria's dog weighs $\quad 48$ pounds.
84 Go Math! Grade 4

Example 2

MP Attend to precision.
Ask a volunteer to read the problem aloud.

- How is this problem like the first problem, and how is it different? Possible answer: Both compare amounts. The first problem involves "times as much as." This problem asks "how much more."
- What do you need to find in this problem? how much more Evan's dog weighs than Oxana's dog
- Look at the model in Step 1. How is this model different from the model in the first problem? Possible answer: Different length boxes represent the weight of each dog.
Discuss Step 2 with students.
- Why should you use subtraction in this equation? Possible answer: Subtraction is used to find the difference between the two weights.
- How would the question the problem asks be different if a multiplication model could be used to represent the problem? Possible answer: How many times as much as Oxana's dog does Evan's dog weigh?

(3) Explain

Share and Show
 Math

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

MP Reason abstractly and quantitatively.

Use Math Talk to help students recognize the difference between the bar models used to represent additive comparison situations and multiplicative comparison situations.

Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

© Quick Check MTSS RtI

If
a student misses the checked problems

Then
Differentiate Instruction with

- Reteach 3.2
- Waggle

(4) Elaborate

On Your Own

If students complete the checked problems correctly, they may continue.
Problem 7 This is a two-step problem that involves both multiplying to compare and subtracting to compare. Have students first draw a bar model for times as many as. Then they can use their solution to help draw and complete the bar model for how many more.

Draw a model. Write an equation and solve.
(6) 2. Last month Nikita trained 3 times as many dogs as cats. If the total number of cats and dogs she trained last month is 28 , how many cats did Nikita train?

Write an equation and solve.
$4 \times n=28$
$n=7$
Nikita trained 7 cats.
© 3. How many more dogs than cats did Nikita train?

Write an equation and solve.
$21-7=n$
$n=14$
Nikita trained 14 more dogs than cats.

On Your Own

Practice: Copy and Solve Draw a model.
Write an equation and solve.
4. At the dog show, there are 4 times as many boxers as spaniels. If there are a total of 30 dogs, how many dogs are spaniels?

$$
6 \text { spaniels }
$$

6. Vadim has 3 times as many guppies as goldfish. If he has 28 fish, how many guppies does he have?

21 guppies
5. There are 5 times as many yellow labs as terriers in the dog park. If there are 18 dogs at the dog park, how many yellow labs are there?

15 yellow labs
7. Carlita saw 5 times as many robins as cardinals while bird watching. She saw a total of 24 birds. How many more robins did she see than cardinals?

16 more robins
Chapter 3•Lesson 285

Meeting Individual Needs

Problem Solving • Applications

8. Cienna and Sven are solving math problems using equations. Tell whether each person's equation is true or false. Explain your answer.

Cienna's equation is true and Sven's is false; Sample

explanation: Both sides of Cienna's equation equal 40.
$56 \div 7=8$, but $15-6=9$, and 8 does not equal 9 .
9. Is the equation true or false? Explain.

$$
5 \times 11=5+5+5+5+5
$$

false; 5×11 means 11 is added 5 times or 5 is added
11 times.
10. Noah built a fenced dog run that is 4 times as long as it is wide. The width is 3 yards. He placed posts at every corner and every yard along the length and width of the run. How many posts did he use?

$$
30 \text { posts }
$$

11. Last weekend, Mandy collected 4 times as many shells as Cameron. Together, they collected 60 shells. How many shells did Mandy collect? Complete the bar model. Then, write an equation and solve.

$$
5 \times n=60
$$

$n=12$
$12 \times 4=48$ Mandy collected 48 shells.

86 Go Math! Grade 4

Problem Solving Applications

neal
 Worla

Attend to precision.

Problem 9 This problem requires students to determine if the equation is true or false. Students must then explain their reasoning using what they know about multiplication.
Problem 10 This problem encourages students to draw a diagram with the fence posts.
Problem 11 This problem assesses students' ability to change comparative situations into equations with an unknown number. Students should recognize the phrase times as many as is an indication that this is a multiplication problem. Students should identify the top row of 4 boxes as representing Mandy's shells, and they should recognize that there are 4 times as many boxes as the one below.

(5) Evaluate
 Formative Assessment

I Can Objective

Have students write to demonstrate the skill for the I Can statement.
I can draw models and write equations to help solve comparison problems by . . . using a bar model that helps you visualize the amounts being compared and helps you decide if you need to multiply or subtract to solve.

Exit Ticket

Write a problem involving how much more than and solve it. Explain how drawing a diagram helped you solve the problem.

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Grab Go!

Version 2.0
Differentiated Centers Kit

Activities

Meaningful and fun math practice

Practice and Homework

Comparison Problems

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine students' understanding of content for this lesson.

Name

Comparison Problems

Draw a model. Write an equation and solve.

1. Sarita made a necklace using 4 times as many blue beads as red beads. She used a total of 40 beads. How many blue beads did Sarita use?
Think: Sarita used a total of 40 beads. Let n represent the number of red beads.

$\underline{5 \times n=40 ; 5 \times 8=40 ;}$
$4 \times 8=32$ blue beads
2. At the zoo, there were 3 times as many monkeys as lions. Tom counted a total of 11 lions. How many monkeys were there?

$3 \times 11=33$ monkeys \qquad

Problem Solving
3. Rafael counted a total of 40 white cars and yellow cars. There were 9 times as many white cars as yellow cars. How many white cars did Rafael count?
\qquad
4. Is the equation true or false? Explain. $6 \times 12=12+12+12+12+12+12$
true; multiplying 6 and 12 is the same as
adding 12 six times.
5. Write Math Write a problem involving how much more than and solve it. Explain how drawing a diagram helped you solve the problem.

Check students' work.

PROFESSIONAL
 DEVELOPMENT

MATHEMATICAL PRACTICES AND PROCESSES

Look for and make use of structure.
Students can make sense of problems involving comparisons by drawing bar models and writing corresponding algebraic equations. Bar models help students visualize and organize the information in a problem and to write an algebraic equation to solve a problem.

The following activities can help promote students' use of bar models and algebraic equations as entry points to solving comparison-type problems:

- Draw a bar model using the number of hours a day you are awake, the number of hours you are asleep, and how many more hours you are awake than asleep.
- Write an equation using a letter to show that 5 times an unknown amount is equal to 30 .
- Write a word problem about a package of muffins that has 3 times as many corn muffins as apple muffins, with 12 muffins in all.

Lesson Check

6. Sari has 3 times as many pencil erasers as Sam. Together, they have 28 erasers. How many erasers does Sari have?
7. Is the equation true or false? Explain.
$3 \times 8=8+8+8+8+8+8+8+8$
false; 3×8 is the same as 3 groups of
8 or 8 added 3 times.

Spiral Review

8. Barbara has 9 stuffed animals. Trish has 3 times as many stuffed animals as Barbara. How many stuffed animals does Trish have?
\qquad
27 stuffed animals
9. Joshua has 112 rocks. Jose has 98 rocks. Albert has 107 rocks. Write the boy's names in order from the least to the greatest number of rocks owned.
10. There are 104 students in the fourth grade at Suvi's school. One day, 15 fourth-graders were absent. How many fourth-graders were at school that day?

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance Multiply Tens, Hundreds, and Thousands

SNAPSHOT

Mathematical Standards

- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Model with mathematics.
- Attend to precision.
- Construct arguments and critique reasoning of others.

I Can Objective

I can use place value and other strategies to multiply tens, hundreds, and thousands.

Learning Goal

Multiply tens, hundreds, and thousands by whole numbers through 10.

Language Objective

Students complete the I Can sentence.

MATERIALS

- MathBoard

ACROSS THE GRADES

Before	Grade 4	
Explore multiplication of two whole numbers with products from 0 to 144, and related division facts.	Multiply two whole numbers, up to three digits by up to two digits, with procedural reliability.	Multiply multi-digit whole numbers including using a standard algorithm with procedural fluency.

ABOUT THE MATH

Teaching for Depth

In this lesson, students are shown different ways to multiply tens, hundreds, and thousands by a whole number through 10.
The first strategy involves students' understanding of place value. In One Way, students draw a quick picture of the problem using a square for one hundred and a square with a T inside for one thousand. Students regroup as needed to find the answer. In Another Way, students rewrite the problem using place value. For example,
8×200 can be rewritten as 8×2 hundreds. Then students use the basic fact, 8×2, to write the answer as 16 hundreds, or 1,600.

In the second strategy, students use patterns to find products. Students visualize patterns using number lines and patterns in multiplication problems. As the number of zeros in a factor increases, the number of zeros in the product increases.

DAILY ROUTINES

Problem of the Day 3.3

For Field Day, the students were grouped into 20 teams of 10 students each. How many is 20 tens? 200

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Materials Digit Cards (1-9)

Mental Math Have pairs practice their multiplication facts. Give partners two sets of digit cards (0-9). Have students shuffle the cards and place them facedown in a single pile on the table. One student turns over two cards and makes a 2-digit number with them. The other student states a multiplication fact with the 2 -digit number as the product or states that it is not possible. Partners switch roles and continue until all cards have been played.

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Use the iTools to review skip counting by 10s.

- What comes in 10s? Possible answers: fingers and toes

Ask volunteers to skip count by 10 s from 10 to 90 using the number chart. The students should stand and each show 10 fingers as they count off.

- How is skip counting by 10 s related to multiplying by 10? Possible answer: Each number I say when I skip count by 10 s is a product of multiplying with 10 .
Have students demonstrate skip counting by 100s and 1,000s.
with the Interactive Student Edition

I Can Objective

I can use place value and other strategies to multiply tens, hundreds, and thousands.

Making Connections

Invite students to tell you what they know about place value.

- What happens to place value as you move from tens to hundreds? The value is 10 times as great.
- What happens to place value as you move from hundreds to thousands? The value is 10 times as great.

Learning Activity

Josie is taking a train to visit a friend. The train has 8 cars, each with 200 seats. How many seats are on the train?

- What are you trying to find? how many seats are on a train
- How many cars are on the train? 8
- How many seats are in one car? 200
- What does the 2 represent in 200? hundreds
- What expression will you use? 8×200

(2) Explore

Unlock the Problem

Read and discuss the problem. Make sure students understand that a "car" is one section of a train.

- How many cars long is the train? 8 cars
- How many seats are in each car? 200 seats

One Way

MP) Model with mathematics.

Point out that drawing quick pictures can help students represent a problem.

- What does each square on the left represent? Each square represents 1 hundred.
- How do the squares on the left show $\mathbf{8} \times \mathbf{2 0 0}$? Possible answer: There are 8 rows of 2 squares. This shows 8 groups of 200 , or 8×200
- What does the picture to the right show? Possible answer: It shows a group of 10 hundreds regrouped as 1 thousand plus 6 hundreds.

Another Way

Explain that students can use place value as another way to solve the problem.

- How can you rename 200 using place value? 2 hundreds
- What basic fact can you use to help you solve this problem? $8 \times 2=16$
- How can you rename 16 hundreds in standard form? Write 2 zeros after 16 to get 1,600.

MP Attend to precision. understanding of how to use place value and the basic fact to solve the problem.

Name

Multiply Tens, Hundreds, and Thousands

(I Can use place value and other strategies to multiply tens, hundreds, and thousands.

\#UNLOCK the Problem

Each car on a train has 200 seats. How many seats are on a train with 8 cars?

Find 8×200.
One Way Draw a quick picture.

Think: 6 hundreds $=600$
$1,000+600=1,600$

Another Way Use place value $8 \times 200=8 \times \quad 2 \quad$ hundreds $=16$ hundreds

$$
=1,600
$$

This Think: 16 hundreds is 1 thousand

Think: 10 hundreds $=1,000$

So, there are 1,600 seats on a train with 8 cars.

Possible explanation: I can solve the basic fact 8×2 and then write the number of zeros in the greater factor, 200.

Chapter 3• Lesson 389

ML Multilingual Support

STRATEGY: Scaffold Language

Draw a quick picture of a multiplication problem with tens, hundreds, and thousands by a whole number through 10.

- Have students describe the picture.
- Next prompt them to say it using place value and write a multiplication equation to match.
- Use leveled questions to help students use math language:

Beginning: Yes/no-Is this 2×400 ?
Intermediate: How many hundreds are there?
Advanced: Explain how your model works.

Other Ways

A Use a number line.
Li's Sled Shop rents 4,000 sleds each month. How many sleds does the store rent in 6 months?

Find $6 \times 4,000$.
Multiplication can be thought of as repeated addition. Draw jumps to show the product.

B Use patterns.
Basic fact:

3×7	$=21 \quad \leftarrow$ basic fact
3×70	$=210$
3×700	$=\frac{2,100}{21,000}$

Basic fact with a zero:

- How does the number of zeros in the product of 8 and 5,000 compare to the number of zeros in the factors? Explain

Possible explanation: there are 4 zeros in the product and only 3 zeros in the factors
because there is a zero in the basic fact, $8 \times 5=40$.
Possible description: as the number of zeros in a factor increases, the number of zeros in the product increases.

90 Go Math! Grade 4
 alk MP) construct arguments and Explain how the number of zeros in the factors and products changes in Example B.

Ready for More
 Logical Individual

- What is the Associative Property of Multiplication? The property that says you may group factors any way you like and the product will remain the same.
Show students this problem: 9×80.
- How can you write 80 as a product of a number and $10 ? 80=8 \times 10$ This means you can rewrite the problem as $9 \times(8 \times 10)$ or, using the Associative Property of Multiplication, $(9 \times 8) \times 10$.
- Which expression shows a basic fact? (9×8)
- Rewrite the expression using the product from the basic fact. 72×10
- So, what is the product of $\mathbf{9} \times \mathbf{8 0}$? the same as the product of 72×10, or 720

Other Ways

Example A

Lead a discussion with students about why they would use multiplication to solve this problem. I am combining the number of sleds rented each month. When I combine equal groups, I can multiply to find the total.

- How do the numbers on the number lines change from one number line to the next? Possible answer: Each number line is 10 times as great as the number line above it.
- How do the products 24, 240, 2,400, and 24,000 change from one product to the next? Possible answer: Each product is 10 times as great as the product before it.
- How does the last number line show
$6 \times 4,000$? Possible answer: The number line shows 6 jumps of 4,000

Example B

- Explain the pattern that you see. Possible explanation: When you increase the number of zeros in one of the factors, there will be an equal increase in the number of zeros in the product.

Construct arguments and critique reasoning of others.

Math
Talk
Talk
Use Math Talk to help students recognize patterns in the number of zeros in factors and products.

- As the number of zeros in a factor changes each time, how does the size of the factor change? Possible answer: It becomes 10 times as great.
- When a tens, hundreds, or thousands number is multiplied by a one-digit number, how does the number of zeros in the product compare to the number of zeros in the tens, hundreds, or thousands number? Possible answer: There will be as many zeros in the product as in the tens, hundreds, or thousands number. There will be an additional zero if the basic fact has a zero.

Common Errors

Error Students may not include the correct number of zeros in the product.
Example $8 \times 5,000=4,000$
Springboard to Learning Have the students write the basic fact first and then circle it before they write the zeros.

(3) Explain

Share and Show
 Math

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

MP Reason abstractly and quantitatively.

Math
Talk
Use Math Talk to focus on students' understanding of how to use place value to find the product.

- How can you restate 2×500 using place value? 2×5 hundreds
- How can you use place value to write the product 2×5 hundreds in standard form?
10 hundreds can be renamed as 1 thousand, which can be written in standard form.
Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

Quick Check
 MTSS (RTI

a student misses the checked problems

Then Differentiate Instruction with

- Reteach 3.3
- Waggle

On Your Own

If students complete the checked problems correctly, they may continue with the remaining problems.

- How can you use inverse operations to find the unknown factor for Problem 11?
I can think 56 divided by 7 equals what number? Since
$7 \times 8=56$, then $56 \div 7=8$. So, $7 \times 8,000=56,000$.

MP Construct arguments and critique reasoning of others.

Problem 13 This problem provides students an opportunity to communicate verbally, not just demonstrate, how the product of a basic fact that ends in zero affects the number of zeros in a product.

Share and Show Mait

1. Use the drawing to find 2×500.

Possible explanation: I can think of 2×500 as 2 times 5 hundreds, which equals 10 hundreds. 10 hundreds equal 1,000 .

Complete the pattern.

2. $3 \times 8=24$
3. $6 \times 2=12$
$3 \times 80=\quad 240$
$3 \times 800=\underline{2,400}$
$6 \times 20=$
120
$6 \times 200=1,200$
$3 \times 8,000=24,000$
$6 \times 2,000=12,000$
(1) 4. $4 \times 5=20$
$4 \times 50=\quad 200$

Find the product.
© 5. $6 \times 500=6 \times$ \qquad hundreds

$$
\begin{aligned}
& =30 \text { hundreds } \\
& =3,000
\end{aligned}
$$

6. $9 \times 5,000=9 \times$ \qquad thousands

$$
=\quad 45
$$

$$
=45,000
$$

On Your Own
Find the product.
7. $7 \times 6,000=42,000$
8. $4 \times 80=$ \qquad 9. $3 \times 500=1,500$
Find the unknown factor.
10. \qquad $\times 9,000=63,000$ 11. $7 \times \underline{8,000}=56,000$
12. $8 \times \underline{400}=3,200$
13. (MP) How does the number of zeros in the product of 8 and 5,000 compare to the number of zeros in the factors? Explain.
Possible explanation: There are 4 zeros in the product and only 3 zeros in the factors
because there is a zero in the basic fact, $8 \times 5=40$.

Chapter 3-Lesson 391

Meeting Individual Needs

UNLOCK the Problem

14. Joe's Fun and Sun rents beach chairs. The store rented 300 beach chairs each month in April and in May. The store rented 600 beach chairs each month from June through September. How many beach chairs did the store rent during the 6 months?

What do you need to know? the total number of beach chairs rented during the 6 months
b. How will you find the number of beach chairs? I will multiply 2 times 300 and 4 times 600. Then I will add the products.
c. Show the steps you use to solve the problem.
$2 \times 300=600$
$4 \times 600=2,400$
$600+2,400=3,000$
d. Complete the sentences

For April and May, a total of $\quad 600$ beach chairs were rented.

For June through September, a total of 2,400 beach chairs were rented.

Joe's Fun and Sun rented $\quad 3,000$ beach chairs during the 6 months.
15. Sveta makes bead necklaces. Beads are packaged in bags of 50 and bags of 200 . Sveta bought 4 bags of 50 beads and 3 bags of 200 beads. How many
beads did Sveta buy? \qquad
16. Hyori has 3 books of 20 stamps and 5 books of 10 stamps. How many stamps does Hyori have? Complete the steps using the numbers on the tiles. Numbers can be used more than once.
$3 \times 20=60$
$5 \times 10=50$
$60+50=110$

Go Math! Grade 4

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

(4) Elaborate

Unlock the Problem

Problem 14 Have students read the problem and discuss the important information. Students can make a list of the steps necessary to solve this multi-step problem.
Math on the Spot Use this video to help students model and solve this type of problem.

Problem 15 This problem assesses students' ability to use place value as well as their ability to solve multi-step problems. If students find 80 or 8,000 beads, they can write patterns or use place value with basic facts to determine the correct number of zeros in each product.

(5) Evaluate
 Formative Assessment

I Can Objective

Have students complete the I Can statement to demonstrate the skill for the I Can statement.
I can use place value and other strategies to multiply tens, hundreds, and thousands by . . . rewriting the problem using place value. For example, to find 4×300, I can rewrite it as 4×3 hundreds. Then I can solve 4×3 hundreds $=12$ hundreds, using the basic
fact 4×3. Then I rename 12 hundreds as 1,200 by writing 2 zeros after the basic fact.

Exit Ticket

Explain how finding 7×20 is similar to finding $7 \times 2,000$. Then find each product.

Practice and Homework

Multiply Tens, Hundreds, and Thousands

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving.

Multiply Tens, Hundreds, and Thousands

Find the product.		
1. $4 \times 7,000=28,000$	2. $9 \times 60=$	540
Think: $4 \times 7=28$		
So, $4 \times 7,000=28,000$.		
3. $8 \times 200=1,600$	4. $5 \times 6,000=$	30,000
5. $7 \times 800=5,600$	6. $8 \times 90=$	720
7. $6 \times 3,000=18,000$	8. $3 \times 8,000=$	24,000
9. $5 \times 500=2,500$	10. $9 \times 4,000=$	36,000

Problem Solving

 Bo11. A bank teller has 7 rolls of coins. Each roll has 40 coins. How many coins does the bank teller have?
12. Theo buys 5 packages of paper. There are 500 sheets of paper in each package. How many sheets of paper does Theo buy?

280 coins
2,500 sheets
13. Explain how finding 7×20 is similar to finding $7 \times 2,000$. Then find each product.

Check students' work.

PROFESSIONAL

 LEARNING
MATH TALK IN ACTION

Teacher: Explain how you found the answer to Problem 10.
Eli: I made a quick picture of the problem. I drew 9 rows of 4 thousands blocks. That was 36 thousands blocks, or 36,000.
Teacher: How did you know what to draw?
Eli: $\quad 9 \times 4,000$ means 9 groups of 4,000.
Teacher: Did anyone use a different strategy?
Jessika: I looked for a pattern. I knew $4 \times 9=36$, so $4 \times 90=360,4 \times 900=3,600$, and $4 \times 9,000=$ 36,000.
Teacher: Explain the pattern you used.
Jessika: Each time I wrote a zero in a factor, I wrote a zero in the product.

Mattie: I found the answer a different way. I thought of $9 \times 4,000$ as 9×4 thousands. Then I found $4 \times 9=36$, so the answer is 36 thousands, or 36,000.

Teacher: Did anyone use a number line to find the product?
Roland: I did. I thought of the problem as repeated addition. So, I made a number line that started at 0 . I marked 4,000; 8,000; 12,000; and so on. It increased by 4,000 each time. Then I made 9 jumps of 4,000 and ended on 36,000.
Teacher: You all used good strategies to find the product! Well done.

Lesson Check

14. A plane is traveling at a speed of 400 miles per hour. How far will the plane travel in 5 hours?

Spiral Review

16. Write a comparison sentence to represent this equation.

$$
6 \times 7=42
$$

Possible answer: 6 times as many as
7 is 42.
18. There are 240 students at a school. That is eight times as many as the number of people on the staff at the school. How many people are on the staff at the school?
15. One week, a clothing factory made 2,000 shirts in each of 6 different colors. How many shirts did the factory make in all?
\qquad
17. The population of Middleton is six thousand, fifty-four people. Write this number in standard form.

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance

Estimate Products by 1-Digit Numbers

SNAPSHOT

Mathematical Standards

- Use place value understanding to round multi-digit whole numbers to any place.
- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Attend to precision.
- Construct arguments and critique reasoning of others.
- Look for and make use of structure.
- Reason abstractly and quantitatively.

I Can Objective

I can estimate products by rounding and determine if exact answers are reasonable.

Learning Goal

Estimate products by rounding and determine if exact answers to multiplication problems are reasonable.

Language Objective

Students offer advice on how to determine if exact answers are reasonable when estimating products by rounding.

MATERIALS

- MathBoard

ACROSS THE GRADES

Before	Grade 4	After
Round whole numbers from 0 to 1,000 to the nearest 10 or 100.	Explore the multiplication and division of multi-digit whole numbers using estimation, rounding and place value.	Explore the multiplication and division of multi-digit numbers with decimals to the hundredths using estimation, rounding and place value.

ABOUT THE MATH

Why Teach This

One way to determine if an answer is reasonable is to use operation sense. If you multiply two 2-digit whole numbers and get a 2-digit product, you know that is not reasonable because the product must be greater than two digits.

Another way is to use estimation. In this lesson, students use different estimation strategies to decide if an answer is reasonable. Some students will check their work by reworking the computation, but most students will not
check their work at all. Teaching them to use estimation will help them find their mistakes.
This is particularly important when students are using calculators. Knowing that calculators do not make mistakes, some students accept the calculator's answer even if it is unreasonable. They often forget that they can make inputting mistakes. Estimating to check for reasonableness will benefit these students.

DAILY ROUTINES

Problem of the Day 3.4

Tia and her mom paid $\$ 12$ for a child's ticket and an adult ticket to attend a flower show. An adult ticket cost 2 times as much as a child's ticket. How much was an adult ticket? \$8

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Round Whole Numbers Have students round each number to the place value that is underlined.

$\underline{3} 54400$	$2, \underline{9} 56$	3,000	$\underline{2}, 956$	3,000
$\underline{4} 42400$	$5,6 \underline{9} 4$	5,690	$\underline{8} 49$	800
$\underline{8}, 4998,000$	$7 \underline{4} 7$	750	$\underline{2} \underline{2}$	320

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Lead a discussion about place value and rounding strategies. Write 153 on the board and use the iTools: Number Lines.

Graph 153 on a number line from 100 to 200. Discuss how the number line can be used to round 153 to the nearest hundred.

- Explain how to round 153 to the nearest hundred without using a number line. Look at the place to the right of the hundreds place. Since it is 5 , round to the next hundred. 153 rounded to the nearest hundred is 200.

(1) Engage

with the Interactive Student Edition

I Can Objective

I can estimate products by rounding and determine if exact answers are reasonable.

Making Connections

Invite students to tell you what they know about estimating.

- What does it mean to estimate? to come up with an approximate number or calculation
- What are examples of when you estimate every day? Possible answers: shopping, time to complete homework, number of people in a room
- Why is estimation a helpful tool? Estimation lets you get an approximate idea for a value without (or before) calculating the exact value.

Learning Activity

Over the span of an hour, 8 customers stopped at a remote gas station. Each purchased 25 gallons of gas. How many gallons of gas did the gas station sell in all?

- There were how many customers in the last hour? 8 customers
- How many gallons of gas did each customer buy? 25 gallons
- Is $\mathbf{2 0 0}$ gallons a reasonable answer? Explain. yes; Possible explanation: I can round the greater factor, 25 , to 30 and multiply 8 times 3 tens $=24$ tens, or 240 . So, 200 is a reasonable answer.

(2) Explore

Unlock the Problem

Attend to precision.

- Do you think all African elephants can lift the same number of pounds? Explain.
Possible answer: No, that is one reason that this is an estimation problem.
Point out that since the question begins with the word about, the answer to this problem should be an estimate, not an exact answer.

One Way

Discuss with students different ways that they can multiply 3×200 to find the estimated product.

- How can you draw a quick picture to multiply $\mathbf{3 \times 2 0 0}$? I can draw three rows of squares with two squares in each row.
- How can you use a number line to multiply $\mathbf{3 \times 2 0 0}$? I can mark the number line with tick marks of 200 , start at 0 , and skip count by 200 three times.

Another Way

Explain that the maximum and minimum numbers produced by rounding to the next higher hundred and the next lower hundred represent a range of possible estimates.

Look for and make use of structure.

- How could you use the Associative Property of Multiplication to multiply 3×200 ?
$3 \times(2 \times 100)=(3 \times 2) \times 100=6 \times 100=600$

Construct arguments and critique

 reasoning of others.

Use Math Talk to help students compare the estimate and the exact answer without actually calculating the exact answer.

Name

Estimate Products by 1-Digit Numbers

(I Can estimate products by rounding and determine if exact answers are reasonable.

\#UNLOCK the Problem ferild

An elephant can reach as high as 23 feet with its trunk. It uses its trunk to pick up objects that weigh up to(3)times as much as a
(165) pound person. About how much weight can an African elephant pick up with its trunk?

$$
\begin{aligned}
& \text { Cross out the information } \\
& \text { you will not use. } \\
& \text { Circle the numbers you will use. } \\
& \text { How will you use the numbers } \\
& \text { to solve the problem? } \\
& \text { Estimate } 3 \times 165 \text {. }
\end{aligned}
$$

One Way Estimate by rounding.

$$
\begin{aligned}
& \text { STEP } 1 \text { Round the greater } \\
& \text { factor to the nearest hundred. } \\
& \begin{aligned}
3 \times 165 \\
\downarrow
\end{aligned} \\
& \begin{aligned}
\text { STEP } 2 \text { Use mental math. } \\
3 \times 200
\end{aligned} \\
& =6 \text { hink: } 3 \times 200=3 \times 2 \text { hundreds } \\
& \\
& \hline
\end{aligned}
$$

So, an African elephant can pick up about 600 pounds with its trunk.

Another Way Estimate by finding two numbers the exact answer is between.

3×165	3×165	Think: 165 is between	
\downarrow	,		
$3 \times 100=300$			

An African elephant is the largest living land
So, an African elephant can pick up between 300 and 600 pounds. mammal.

1. Is 200 less than or greater than 165 ? \qquad greater than
2. So, would the product of 3 and 165 be less than or
greater than $600 ?$ \qquad

600; possible explanation: 165 is closer to 200 than to 100 , so the exact answer is closer to 3×200 than 3×100.

Chapter 3 • Lesson 495

Multilingual Support

STRATEGY: Illustrate Understanding

Place students with partners. Write on the board trunk and feed. Say, Both of these words-trunk and feed-have two meanings.

- Have students draw a picture to show understanding of each word in context.
- Students should differentiate between trunk as an elephant's trunk and a chest, and feed as animal food and a verb, "feeding animals."

You can estimate a product to find whether an exact answer is reasonable.

Aril's horse eats 86 pounds each week. Aril solved the equation below to find how much feed she needs for 4 weeks.
$4 \times 86=$
Aril says she needs 344 pounds of feed.
Is her answer reasonable?
One Way Estimate.
4×86
Think: Round to the nearest ten 360

344 is close to 360 .
Another Way Find two numbers the exact answer
is between.

Share and Show

```
Math:
```


Possible explanation: 11,065 is close to the estimate of 10,000 . The exact answer should be between $5 \times 2,000=$ 10,000 and $5 \times 3,000=15,000.11,065$ $5 \times 2,213$ is between 10,000 and 15,000 .

$$
5 \times \underline{2,000}=\underline{10,000}
$$

Explain that using estimation is one way of checking that an answer is reasonable.

One Way

Guide students to round the greater factor.

- Why do you multiply $\mathbf{4 \times 9 0}$? Possible answer: 4×90 will give you an estimate. If 344 is close to the estimate, 344 is reasonable.

Another Way

Let students know that they can round to the nearest higher and lower ten to find two numbers that the exact answer is between.

- Where does the factor $\mathbf{8 0}$ come from? The factor 86 is rounded to the lower ten, or 80 .
- How do you know that the actual answer is between the two products you found?
Possible answer: The factor 86 is between 80 and 90 .

(3) Explain

Share and Show
 Math

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

MP) Reason abstractly and quantitatively.
Math
Talk Use Math Talk to focus on students' understanding of using an estimate to check an exact answer for reasonableness.

- How do the results of rounding show that $\mathbf{1 1 , 0 6 5}$ is reasonable? 11,065 is close to 10,000.
- How do the results of finding a range show that $\mathbf{1 1 , 0 6 5}$ is reasonable? 11,065 is between 10,000 and 15,000.

Common Errors

Error Students may write the incorrect number of zeros when they multiply multiples of ten.
Example For Problem 1, students find $5 \times 2,000=100,000$.

Springboard to Learning Have students use words to describe the multiplication expression five groups of two thousand. Have students ask themselves if their product makes sense.

Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

Quick Check
 MTSS RtI

If
a student misses the checked problems

Then
Differentiate Instruction with

- Reteach 3.4
- Waggle

(4) Elaborate

On Your Own

If students complete the checked problems correctly, they may continue.

Reason abstractly and quantitatively.

- How can you tell whether the exact answer in Problem 5 is reasonable? Possible answer: Round $\$ 58$ to $\$ 60$ and multiply $3 \times \$ 60$.
Problem 8 Students should look at the answer choices to help them determine the estimation strategy they should use. Recognizing that all answer choices are multiples of 100 , they will need to round 265 to the greater hundred and also to the lesser hundred to determine a range of numbers between $600(3 \times 200)$ and $900(3 \times 300)$.

Tell whether the exact answer is reasonable.
3. Kira needs to make color copies of a horse show flyer. The printer can make 24 copies in 1 minute. Kira says the printer makes 114 copies in 6 minutes.

Possible explanation: The answer is not reasonable because it is not between
the estimates of 120 and 180.

On Your Own

Tell whether the exact answer is reasonable.
5. MP Mrs. Dorji sells a roll of coastal Bermuda horse hay for $\$ 58$. She says she will make $\$ 174$ if she sells 3 rolls.

Possible explanation: The answer is reasonable because 174 is close to the estimate of 180.
7. Path A and Path B are walking paths used for horses. Path A is 118 feet long. Path B is 180 feet long. Carlos walks his horse down each path 3 times. Which path did Carlos use to walk his horse about 500 feet? Explain.

Path B; possible explanation:
I rounded 118 to 100 and multiplied by
$3 ; 3 \times 100=300$. I then rounded 180 to
200 and multiplied by $3 ; 3 \times 200=600$.
500 is closer to the estimate of 600 than it is to the estimate of 300 .
4. Jones Elementary is having a car wash to raise money for a community horse trail. Each car wash ticket costs $\$ 8$. Tiara says the school will receive $\$ 1,000$ if 125 tickets are sold.

Possible explanation: The answer is
reasonable because $\mathbf{\$ 1 , 0 0 0}$ is between
the estimates of \$800 and \$1,600.
6. Mr. Molefe sells horse supplies. A pair of riding gloves sells for $\$ 16$. He says he will make $\$ 144$ if he sells 9 pairs.

Possible explanation: The answer is
reasonable because it is between the
estimates of \$90 and \$180.
8. Students in the third grade sell 265 tickets to the school play. Students in the fourth grade sell 3 times as many tickets as the third grade students. Estimate the number of tickets the fourth grade students sold by finding the two numbers the exact answer is between.

The students sold between

0
300
600
800
:---
600
900
1,200

Meeting Individual Needs

Cross-Curricular: Reading

Make Predictions
As you read a story, you make predictions about what might happen next or about how the story will end.

When you solve a math problem, you make predictions about what your answer might be.

An estimate is a prediction because it helps you to determine whether your answer is correct. For some problems, it is helpful to make two estimates-one that is less than the exact answer and one that is greater.

Predict whether the exact answer will be less than or greater than the estimate. Explain your answer.
9. The food stand at the zoo sold 2,514 pounds of hamburger last month. The average cost of a pound of hamburger is $\$ 2$. Jeremy estimates that about $\$ 6,000$ worth of hamburger was sold last month.
Less than; The actual amount of hamburger sold is
486 pounds less than the estimated amount of 3,000
pounds. So, the exact answer will be less than
the estimate.
10. A zoo bought 2,240 pounds of fresh food for the bears this month. The average cost of a pound of food is $\$ 4$. Jeremy estimates that about $\$ 8,000$ was spent on fresh food for the bears this month.

Greater than; The actual amount of food bought for
the bears this month was 240 pounds greater than
the estimated amount of 2,000 pounds. So, the exact
answer will be greater than the estimate.

Cross-Curricular: Reading

When students estimate before they solve a problem, they are using information from the problem and prior knowledge to make a prediction.

- Problem 9 Why is the exact answer less than Jeremy's estimate? Possible answer: He rounded 2,514 up to 3,000 , so $\$ 6,000$ is an overestimate.

Math on the Spot Use this video to help students model and solve this type of problem.

- Problem 10 Why is the exact answer greater than Jeremy's estimate? Possible answer: He rounded 2,240 down to 2,000.
- When you estimate before solving a problem, what are you predicting? Possible answers: the number of places in the answer, a reasonable answer

(5) Evaluate
 Formative Assessment

I Can Objective

Have students offer advice to another student to demonstrate the skill for the I Can statement.
I can estimate products by rounding and determine if exact answers are reasonable
by . . . rounding the greater factor to the nearest higher place and then multiply using mental math.

Exit Ticket

Describe a real-life multiplication situation for which an estimate makes sense.

Practice and Homework

Estimate Products by 1-Digit Numbers

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine students' understanding of content for this lesson.

Estimate Products by 1-Digit Numbers

Possible estimates are given.
Estimate the product by rounding.

1. 4×472
2. $2 \times 6,254$
3. 9×54
4. $5 \times 5,503$
4×472
\downarrow
4×500
$2,000 \quad 12,000 \quad 450 \quad 30,000$

Find two numbers the exact answer is between.
5. 3×567
6. $6 \times 7,381$
7. 4×94
8. 8×684
$\underline{1,500}$ and $1,800 \quad 42,000$ and $48,000 \quad 360$ and $400 \quad 4,800$ and 5,600

Problem Solving

9. Cato drinks 8 glasses of water each day. He says he will drink 2,920 glasses of water in a year that has 365 days. Is the exact answer reasonable? Explain

Yes. Possible explanation: It is
reasonable because it is between the
estimates of 2,400 and 3,200 .
10. Most Americans throw away about 1,365 pounds of trash each year. Is it reasonable to estimate that Americans throw away over 10,000 pounds of trash in 5 years? Explain. No. Possible explanation: A reasonable
estimate is between 5,000 and 10,000 pounds.
11. Write Math Describe a real-life multiplication situation for which an estimate makes sense.

Check students' work.

Lesson Check

12. A theater has 4,650 seats. If the theater sells all the tickets for each of its 5 shows, about how many tickets will the theater sell?

Possible estimate: about 25,000 tickets

Spiral Review
14. Tell whether each equation is true or false.

a. $6 \times 3=6+6+6$	true
b. $2 \times 5=5+5+5+5+5$	false
c. $7 \times 4=4+4+4+4+4+4$	
	false
d. $8+8+8+8=4 \times 8$	true

16. Pennsylvania has a land area of 44,816 square miles. What is the land area of Pennsylvania rounded to the nearest hundred?
\qquad
44,800 square miles
17. Washington Elementary has 4,358 students. Jefferson High School has 3 times as many students as Washington Elementary. About how many students does Jefferson High School have?
\qquad 12,000 students
18. Mr. Turkowski bought 4 boxes of envelopes at the office supply store. Each box has 500 envelopes. How many envelopes did Mr. Turkowski buy?
\qquad
19. The table shows the types of movies people downloaded last month.

Movie Downloads	
Type	Number Downloaded
Comedy	6,720
Drama	4,032
Action	5,540

How many comedy and action movies were downloaded last year?

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance

 Multiply Using the Distributive Property
SNAPSHOT

Mathematical Standards

- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Model with mathematics.
- Construct arguments and critique reasoning of others.
- Attend to precision.

I Can Objective

I can use models, equations, and the Distributive Property to solve 2 -digit by 1 -digit multiplication problems.

Learning Goal

Use the Distributive Property to multiply a 2 -digit number by a 1 -digit number.

Language Objective

Student pairs discuss how to use the Distributive Property to multiply a 2 -digit number by a 1 -digit number.

MATERIALS

- MathBoard
- grid paper
- color pencils
- base-ten blocks

ACROSS THE GRADES

Before	Grade 4	After		
Multiply a one-digit whole number by a				
multiple of 10, up to 90 , or a multiple of 100,				
up to 900 , with procedural reliability.			\quad	Multiply two whole numbers, up to three
:---				
digits by up to two digits, with procedural				
reliability.	\quad	Multiply and divide a multi-digit number with		
:---				
decimals to the tenths by one-tenth and one-				
hundredth with procedural reliability.				

ABOUT THE MATH

Using a Rectangular or Area Model

The Distributive Property is the underlying concept for multiplication of greater numbers.

- The Distributive Property is often illustrated by an algebraic equation. A model helps you visualize how the property works.
- Students learn to draw a model for multiplying a 2-digit number by a 1 -digit number. They label the model with the partial products. They can see how multiplication is distributed over addition.

In an upcoming lesson, students connect the model to the algorithm as they record the partial products and add them to find the product.

DAILY ROUTINES

Problem of the Day 3.5

Patrick has a stamp collection. He has stamps from 9 different countries. He has 175 stamps for each different country. Write an expression that would give an estimate of how many stamps Patrick has. 9×200

Vocabulary area model, Distributive Property, partial product

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Write the following problems on the board. Have students practice basic division facts by writing quotients as fast as possible.

$18 \div 3=6$	$24 \div 6=4$
$20 \div 4=5$	$45 \div 5=9$
$36 \div 9=4$	$32 \div 4=8$
$56 \div 8=7$	$42 \div 7=6$
$48 \div 6=8$	$24 \div 8=3$
$15 \div 3=5$	$30 \div 5=6$
$54 \div 6=9$	$72 \div 9=8$
$40 \div 8=5$	$25 \div 5=5$

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Have students share their experiences with drawing rectangular models. Ask students if they have ever drawn a map of a room.

- What shape did you make the map? Possible answer: a rectangle
- How might you show that one side of the room is for your desk area? Possible answer: draw a line to show the part

(1) Engage

with the Interactive Student Edition

I Can Objective

I can use models, equations, and the Distributive Property to solve 2-digit by 1-digit multiplication problems.

Making Connections

Invite students to tell you what they know about properties of multiplication.

- What are some properties of multiplication? Possible answers: Associative Property, Commutative Property
- How are these properties helpful? Possible answer: You can group numbers or change their order to make multiplication easier.

Learning Activity

Each week, Shell's neighbor, Mr. Wong, goes to a local diner on Monday, Tuesday, Thursday, and Saturday nights. He drives to the diner and parks for 19 minutes. For how many minutes each week is Mr. Wong parked at the diner?

- What are you trying to find? the number of minutes Shell's neighbor is parked at the diner in total over 4 nights
- How long does Shell's neighbor park at the diner each night? 19 minutes
- How many nights per week does Shell's neighbor go to the diner? 4 nights
- What expression will help you find the answer? 4×19

(2) Explore

Investigate

Model with mathematics.
Students will use grid paper and draw an area model to represent 6×13. When the squares of an array are pushed together, it is sometimes referred to as an area model.
A A rectangle can be drawn that is 6 units down and 13 units across.
B Students should draw a vertical line on the model to separate 6 rows of 13 into 6 rows of 5 and 6 rows of 8 .

- How does breaking apart the model help you multiply $\mathbf{6 \times 1 3}$? Possible answer: I can break apart 13 into lesser numbers and use basic facts to multiply.
C Give students an opportunity to share the different ways they broke apart 13.
- Describe the number of rows and columns in each of your rectangles. Possible answer: I used 6×6 and 6×7.
Share with students that they have just used the Distributive Property. Read the definition of the Distributive Property again with students.

Attend to precision.

Have students restate the Distributive Property in their own words and explain how using the rectangular model demonstrates using the property.
Students should recognize that the vertical line they drew broke the larger rectangle into two smaller rectangles, each representing a product. The sum of the products of both rectangles is the product of 6×13.

Multiply Using the Distributive

 PropertyI Can use models, equations, and the Distributive Property to solve 2-digit by $\mathbf{1}$-digit multiplication problems.

Investigate

Materials $=$ color pencils, grid paper
You can use the Distributive Property to break apart numbers to make them easier to multiply.

The Distributive Property states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products.
A. Outline a rectangle on the grid to model 6×13.
B. Think of 13 as $5+8$. Break apart the model to show $6 \times(5+8)$. Label and shade the smaller rectangles. Use two different colors.
Check students' models.
Use the Distributive Property. Find the product each smaller rectangle represents. Then find the sum of the products. Record your answers.
Answers will vary. Possible answer is shown.

apart the model to show $6 \times$ \qquad as a diff $+\quad$ rerent). Find the product each smaller rectangle represents. Then find the sum of the products. Record your answers.
Answers will vary. Possible answer is shown.
$\underline{6} \times \underline{9}=54$
$6 \times 4=24$
$54+24=78$

Draw Conclusions

1．Explain how you found the total number of squares in each model in Steps B and C．
Possible answer：I divided the first model into a 6×5 rectangle and a 6×8 rectangle，
and added： $30+48=78$ ．Answers will vary for Step C．

2．Compare the sums of the products in Steps B and C with those of your classmates．What can you conclude？

Possible answer：They are the same．This shows that you will get the same answer no matter how you break apart the rectangle．

3．To find 7×23 ，is it easier to break apart the factor， 23 ，as $20+3$ or $15+8$ ？Explain

Possible explanation： $20+3$ ，because I can use mental math to multiply
by multiples of 10 ．

Make Connections

Another way to model the problem is to use base－ten blocks to show tens and ones． STEP 1

Use base－ten blocks to model 6×13 ．
－

（1）7mome

（1）าดาทา
6 rows of 1 ten 3 ones

STEP 2
Break the model into tens and ones．

Math Talk：Possible answer：I can break apart the model into tens and ones，and then use mental math to find the product．

STEP 3
Add the tens and the ones to find the product．
－1－．．．．．．．．．．．．．．．．．． （mmmm （17m⿵⺆⿻二丨冂刂 ummmi eer （mmmm ees $(6 \times 10)+(6 \times 3)$ $60+18$

In Step 2，the model is broken into two parts．Each part shows a partial product．The partial products are 60 and 18 ．

Draw Conclusions

Problem 1 Help students connect the models they drew to the symbolic form of the Distributive Property．For the first model：
$6 \times 13=6 \times(5+8)$

$$
\begin{aligned}
& =(6 \times 5)+(6 \times 8) \\
& =30+48 \\
& =78
\end{aligned}
$$

Use Problem 3 to help students recognize that breaking apart a factor is a strategy that they can use to multiply more efficiently using mental math．

Make Connections

Students are connecting the area model they draw on grid paper to an array model using base－ten blocks．A benefit of using base－ten blocks is that the greater factor will always be broken into 10 and another addend．
－How does Step 3 show the Distributive Property？Possible answer：It shows that multiplication was distributed over addition．
－Why do you think the word partial is used in the phrase partial products？Possible answer：The product of each part is only part of the whole product．
To extend students＇thinking，discuss why it is helpful to use parentheses in Steps 2 and 3. Give students the opportunity to explain how the problem is clarified using parentheses．

MP Attend to precision．

Math
 Talk

Use Math Talk to focus on students＇ understanding of breaking apart a factor to make finding the product easier．
－Is multiplying 6 by 10 easier than multiplying 6 by a number from 2 to 9 ？
Explain．yes；Possible explanation：You do not need to recall a basic fact when you multiply by 10 ．You just write a zero after 6 ．

Common Errors

Error Students may add a number rather than the products．

Example $6 \times 13=(6 \times 10)+3$
rather than $(6 \times 10)+(6 \times 3)$
Springboard to Learning Explain that they are breaking the original multiplication problem into two products．They must have both products to add for the total．

（3）Explain

Math
Share and Show
The first problem connects to the learning model．Have students use the MathBoard to explain their thinking．
Use the checked problems for Quick Check． Students should show their answers for the Quick Check on the MathBoard．

Quick Check MTSS RTI

If
a student misses the checked problems

Then
Differentiate Instruction with
－Reteach 3.5
－Waggle

Construct arguments and critique reasoning of others．
To extend students＇thinking，ask students to describe the similarities and differences between using grid paper and using base－ten blocks．They may wish to share which method they prefer and why．

（4）Elaborate

On Your Own

MP）Model with mathematics．

Problem 9 This problem provides an opportunity for students to explain what they have been demonstrating with models．
Problem 10 This problem assesses students＇ ability to multiply and model the Distributive Property．Check that student diagrams correctly reflect the Distributive Property．If diagrams are correct and students still have the wrong answer，check for regrouping errors．

Name
Share and Show
Mothe

Model the product on the grid．Record the product．Models will vary．Possible models

1． $3 \times 13=39$

Find the product．
$6 \times 14=84$
（17mmo EEEE
4． $5 \times 18=90$
（ 1 าาาา

（17）mimim Eevereve
（17）
©5． $4 \times 16=\frac{64}{}$

ยาาาาาา EヒEヒEヒ

Use grid paper or base－ten blocks to model the product． Then record the product．Check students＇models．
6． $7 \times 12=\quad 84$
7． $5 \times 16=$
80
8． $9 \times 13=$
117

On Your Own

9．MP）Explain how modeling partial products can be used to find the products of greater numbers．

Possible explanation：Using base－ten blocks，you can skip count by tens or multiply by
multiples of 10 to find the number of tens and multiply basic facts to find the number of
ones．Then，add the number of tens and ones to find the product．

10．Use the Distributive Property to model the product on the grid．Record the product．
$4 \times 14=56 \quad$ Models will vary．Possible model is given．

11. Kyle went to a fruit market. The market sells a wide variety of fruits and vegetables. The picture at the right shows a display of oranges.
Write a problem that can be solved using the picture.

Possible answers are shown.

Pose a problem.
One display can hold 8 rows of 12
oranges. If $\mathbf{2}$ rows in the display are
empty, how many oranges are shown in
the display?

Solve your problem.

Describe how you could change the problem by changing the number of rows of oranges and the number of empty spaces in the picture. Then solve the problem.

Possible answer: One display can hold 9 rows of 12 oranges. If 5 rows in the display
are empty, how many oranges are shown in the display? 9 rows -5 rows $=4$ rows;
4 rows $\times 12$ oranges $=48$ oranges.

4 Go Math! Grade 4

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!'

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Problem 11 After students read the situation, discuss the information presented in the diagram. Students should identify that each of the 6 rows has 12 oranges. They should also recognize that 2 rows are empty. Give students an opportunity to share their problems and solutions with the class.
Students should find that changing the information given in a problem will change the result.

Math on the Spot Use this video to help students model and solve this type of problem.

(5) Evaluate
 Formative Assessment

I Can Objective

Have student pairs discuss how to use the Distributive Property to demonstrate the skill for the I Can statement. Have them compare the methods they used to break up the 2-digit factor into two lesser factors.
I can use models, equations, and the Distributive Property to solve 2-digit by 1-digit multiplication problems because . . . the Distributive Property lets me break apart the greater number as a sum of two lesser numbers. Then I can multiply each of the two lesser numbers by the 1-digit factor, using basic facts I know. Then I add these partial products to find the total product. I can draw a rectangle to help decide how to break apart the 2-digit number.

Exit Ticket

Explain how you can use a model to find 6×17.

Practice and Homework

Multiply Using the Distributive Property

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson． Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving．Use the Write Math section to determine students＇understanding of content for this lesson．

Multiply Using the Distributive Property

LESSON 3.5 Practice and Homework

Model the product on the grid．Record the product．

$4 \times 10=40$ and $4 \times 9=36$
$40+36=76$

Find the product．
3． $4 \times 14=\underline{56}$
4． $3 \times 17=51$
5． $6 \times 15=\underline{90}$

ツயnMm ロロロロロロロ ロッルームーロロロロロロロ ローHMM ロロロロロロロ

Man OMA

 MMM OMOMO

Problem Solving

6．Michael arranged his pennies in the following display．
0000000000000 0000000000000 ○○○○○○○○○○○○○ 0000000000000 0000000000000 0000000000000 0000000000000
How many pennies does Michael have in all？

91 pennies

Write Math Explain how you can use a model to find 6×17 ．
\qquad
\qquad
\qquad
\qquad

Lesson Check

8．The model shows how Gig planted flowers in his garden．

How many flowers did Gig plant？
\qquad

Spiral Review
10．Center City has a population of twenty－one thousand，seventy people．
Write the population in standard form．
\qquad

12．Imelda has 5 times as many baseball cards as football cards．In all，she has 120 baseball and football cards．How many baseball cards does Imelda have？

9．The model below represents the expression 5×18
ツWMMM ロロロロロロロロ
MMMMm ロロロロロロロロ ロHMHM ロロロロロロロロ ササロサHT ロロロロロロロロ ロOUOHODロロロロロロロ
How many tens will there be in the final product？
\qquad

11．Is the equation true or false？Explain． $5 \times 7=7+7+7+7+7+7+7$

false； 5×7 is the same as 5 groups

 of 7 or 7 added 5 times．13．A ruby－throated hummingbird beats its wings about 53 times each second．About how many times does a ruby－throated hummingbird beat its wings in 5 seconds？

Continue to practice concepts and skills with Lesson Check．Use Spiral Review to engage students in previously taught concepts and to promote content retention．

Lesson at a Glance

 Multiply Using Expanded Form
SNAPSHOT

Mathematical Standards

- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Model with mathematics.
- Attend to precision.
- Construct arguments and critique reasoning of others.
- Look for and make use of structure.

I Can Objective

I can use expanded form to multiply a multi-digit number by a 1-digit number.

Learning Goal

Use expanded form to multiply a multi-digit number by a 1-digit number.

Language Objective

Students list the steps to multiply a multi-digit number by a one-digit number using expanded form.

MATERIALS

- MathBoard
- spinner(10 section)

ACROSS THE GRADES

Before	Grade 4	After
Multiply a one-digit whole number by a multiple of 10, up to 90 , or a multiple of 100, up to 900 , with procedural reliability.	Multiply two whole numbers, up to three digits by up to two digits, with procedural reliability.	Multiply and divide a multi-digit number with decimals to the tenths by one-tenth and one- hundredth with procedural reliability.

ABOUT THE MATH

Modeling Expanded Form

In this lesson, students use expanded form and the Distributive Property to multiply a multi-digit number by a 1-digit number. They use the area model representing the Distributive Property to help record the multiplication.

- Write the greater factor in expanded form, starting with the greatest place.
- Use the Distributive Property to record partial products for the area model, starting with the greatest place.
- To find the product (the total area of the model), add the partial products.
By using the area model and expanded form, students are able to gain a deeper understanding of the multiplication process.

DAILY ROUTINES

Problem of the Day 3.6

Fiona used the Distributive Property to find the product 3×14. Write an expression that she might have used.
Possible answer: $3 \times(10+4)$

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Have students practice adding multi-digit numbers using the problems below. Challenge students to complete at least four of the problems using mental math.

$$
\begin{array}{ll}
239+509748 & 7,000+2,1309,130 \\
583+317900 & 6,324+8427,166 \\
14,926+3,83218,758 & 738+7411,479 \\
873+4,8935,766 & 3,751+5,7369,487
\end{array}
$$

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Have students use the Distributive Property of Multiplication to find the unknown numbers.

$$
\begin{aligned}
& 3 \times(10+7)=(\square \times 10)+(3 \times \square) 3 ; 7 \\
& 8 \times(9+5)=(8 \times \square)+(\square \times 5) 9 ; 8 \\
& \square \times(\square+8)=(6 \times 7)+(6 \times 8) 6 ; 7 \\
& \square \times(10+\square)=(9 \times 10)+(9 \times 8) 9 ; 8
\end{aligned}
$$

- What does the Distributive Property state? Possible answer: Multiplying a sum by a number is the same as multiplying each addend by the number and adding the products.

(1) Engage

with the Interactive Student Edition

I Can Objective

I can use expanded form to multiply a multi-digit number by a 1-digit number.

Making Connections

Invite students to tell you what they know about multi-digit numbers.

- What is a multi digit number? A multi-digit number has more than one digit in the number.
- What are examples of multi-digit numbers? Possible answers: 18, 350, or 5,748.

Learning Activity

An airplane travels between two major cities, 277 miles apart, making 5 one-way trips each day. As part of its flight path, it flies directly over a small diner. How many miles does the airplane fly each day?

- How many times does the airplane fly over the diner each day? 5 times
- How far does the airplane fly each time? 277 miles
- What is one way to multiply 277 by 5? Add 5 groups of 277. $277+277+277+$ $277+277$

(2) Explore

Unlock the Problem

Example 1

Work through the steps with students.

- How can you write a number in expanded form? Possible answer: Write the number as the sum of the value of each digit, starting with the greatest place value.
- How do you use the Distributive Property to multiply? Possible answer: Multiply each addend in expanded form by the 1 -digit number. Then add the partial products.

MP) Attend to precision.

- How does the model relate to the Distributive Property? Possible answer: Each rectangle represents multiplying an addend in expanded form by the 1 -digit number.
- Why do you add in Step 4? Possible answer: After I find each partial product, I need to add the partial products to find the answer.

MP Construct arguments and critique reasoning of others.

 Use Math Talk to focus on students' understanding of how to check the reasonableness of their answer.- To check the reasonableness of an answer, do you need to find an exact number, or is an estimate enough? An estimate is enough.

Look for and make use of structure.

- How would the work have been different if 143 had been 103? Possible answer: The expanded form of the 3-digit factor would have had only hundreds and ones. So, the model would have had only two parts, and there would have been only two partial products to add.

Name

Multiply Using Expanded Form

(I Can use expanded form to multiply a multi-digit number by a 1 digit number.

ML

Multilingual Support

STRATEGY: Frontload

Write on the board: expanded and partial.

- Ask students what comes to mind when they hear the word expand. Write the responses on the board. Possible examples: a peacock's tail feathers, a fan
- Do the same with the word partial. Possible examples: partial loaf of bread, partial deck of cards
- Put students with partners. Have them come up with other examples together.

Example 2 Use expanded form.

The gift shop at the animal park orders 3 boxes of toy animals. Each box has 1,250 toy animals. How many toy animals does the shop order?

Multiply. $3 \times 1,250$

STEP 1

Write 1,250 in expanded form. Use the Distributive Property. $3 \times 1,250=3 \times(\underline{1,000}+\underline{200}+\underline{50})$

$$
=(3 \times 1,000)+(3 \times 200)+(3 \times 5)
$$

STEP 2

Add the partial products.
3,000

Share and Show Math

Record the product. Use expanded form to help
© 2. $4 \times 59=236$
(6 3. $3 \times 288=864$

Possible explanation: Breaking apart the greater factor into its expanded form makes using the Distributive Property easier.

108 Go Math! Grade 4

Ready for More

 Visual Partners

Materials Spinner (10-section)

- Have students label a $10-$ section spinner from 0-9.
- Students can spin the pointer four times to make a 3-digit by 1-digit multiplication problem.
- One student estimates the product. The other student uses expanded form to multiply.
- Students compare the estimate to the product to check for reasonableness.
- Then have students switch roles and solve a new multiplication problem.

Example 2

Read and discuss the problem. Then work through the example with students.

- When writing 1,250 in expanded form, why do you not write anything for the ones place? Possible answer: The value of the ones digit is zero. Adding zero does not change the sum of the partial products, so I do not need to include it.
- How is multiplying by a 3-digit number similar to multiplying by a 4-digit number using expanded form? Possible answer: The steps are the same, but you may have more or fewer partial products.

(3) Explain

Share and Show
 Math

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

MP) Attend to precision.

Use Math Talk to help students recognize that breaking a number apart into its expanded form is a method used for finding a product more easily.

- How do the digits in the factors 59 and 288 compare to the digits in each part of their expanded forms? Possible answer: 59 and 288 have 2 and 3 digits that are not zero. Each part of their expanded forms has only one of these nonzero digits.
Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

(4) Elaborate

On Your Own

If students complete the checked problems correctly, they may continue with the remaining problems.
Problems 4-9 Students use expanded form. Have students estimate to check the reasonableness of their answer.

MP) Model with mathematics.

Problem 10 Students are required to write an expression to model using expanded form to multiply.
Problem 11 This is a multi-step problem. After students multiply to find the total tacks bought, they need to subtract the number of tacks used to put up posters. Remind students to read the problem carefully to identify what information to use in each step of the solution.

MP) Look for and make use of structure.

- How can you use expanded form to find the product of a 1-digit number and a 6-digit number? Possible answer: Write the 6-digit number in expanded form. Use the Distributive Property to multiply each addend by the 1 -digit number, and then add the partial products to find the product.

On Your Own

Record the product. Use expanded form to help.
4. $4 \times 21=$
6. A hotel has 128 rooms on each floor. There are 4 floors in all. If 334 of the rooms in the hotel have been cleaned, how many rooms still need to be cleaned?

178 rooms
5. $6 \times 35=210$
7. Ben wants to buy 2 blue sweaters for $\$ 19$ each and 3 brown sweaters for $\$ 44$ each. How much will Ben spend on the five sweaters?
8. A jeweler has 36 inches of silver chain. She needs 5 times that much to make some necklaces and 3 times that amount to make some bracelets. How much silver chain does the jeweler need to make her necklaces and bracelets?

$$
288 \text { inches }
$$

Naveena walks her dog 3 times a day. Each time she walks her dog, she walks 1,760 yards. How many yards does she walk her dog in 3 days?

15,840 yards
10.
(MP) What expression could you write to show how to multiply 9×856 using place value and expanded form?
$(9 \times 800)+(9 \times 50)+(9 \times 6)$
11. Lupita bought 4 packages of tacks. There are 48 tacks in a package. She used 160 of the tacks to put up posters. How many tacks does she have left? Explain.
32 tacks; possible explanation: I multiplied 4×48
to find how many tacks Lupita bought; 192. Then
I subtracted 160 from 192 to find how many tacks
Lupita has left; $192-160=32$.

Show the Math
Demonstrate Your Thinking

Common Errors

Error Students may forget to multiply the 1-digit number by each addend when using the Distributive Property.

Example $3 \times 288=3 \times(200+80+8)$ $=(3 \times 200)+(3 \times 8)$

Springboard to Learning Tell students to underline each addend after they write it using the Distributive Property. $3 \times 288=$ $3 \times(\underline{200}+\underline{80}+\underline{8})=(3 \times \underline{200})+$ $(3 \times \underline{80})+(3 \times \underline{8})$

Meeting Individual Needs

Problem Solving • Applications

Reald

Use the table for 12-13.

Sacco Nursery Plant Sale Prices per Tree				
Tree	Regular Price	Discounted Price (4 or more)		
Flowering Cherry	$\$ 59$	$\$ 51$		
Italian Cypress	$\$ 79$	$\$ 67$		
Muskogee Crape Myrtle	$\$ 39$	$\$ 34$		
Royal Empress	$\$ 29$	$\$ 25$		

12. What is the total cost of 3 Italian cypress trees?
\qquad
13. Tanya says that the difference in the cost of 4 flowering cherry trees and 4 Muskogee crape myrtles is $\$ 80$. Is she correct? Explain.

No. Possible explanation: Tanya used the regular
price rather than using the discounted price to get
her answer.
14. Write Math What is the greatest possible product of a 2-digit number and a 1-digit number? Explain how you know.

891; possible explanation: 99 is the greatest
2-digit number and 9 is the greatest 1-digit
number. $99 \times 9=891$
15. Multiply 5×381 using place value and expanded form. Select a number from each box to complete the expression.

$$
\left(5 \times \begin{array}{c}
30 \\
300
\end{array}\right)+\left(5 \times \begin{array}{c}
8 \\
80
\end{array}\right)+\left(5 \times \frac{1}{10}\right)
$$

110 Go Math! Grade 4

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!'

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Activities

Meaningful and fun math practice

Problem Solving Applications

Problem 12 This is a one-step problem that requires students to use data from the table.

Model with mathematics.

Problem 13 Students are required to use higher order thinking skills as they evaluate if Tanya's statement is correct. This is a multistep problem requiring students to gather the correct information from the table.

- What is the correct answer using the discounted prices? \$68
Math on the Spot Use this video to help students model and solve this type of problem.

Problem 15 Students will be using the Distributive Property to break 381 into three numbers that are easier to multiply. Students should recognize that the numbers they choose should represent 381 in expanded form. Using the expanded form of notation should enable students to compute mentally to check their work.

(5) Evaluate
 Formative Assessment

I Can Objective

Have students list steps to demonstrate the skill for the I Can statement.
I can use expanded form to multiply a multidigit number by a 1-digit number by . . . first writing the greater factor in expanded form. Then I can use the Distributive Property to multiply each addend by the 1 -digit number and add the partial products to find the product.

Exit Ticket

Explain how you can find 3×584 using expanded form.

Practice and Homework

Multiply Using Expanded Form

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine students' understanding of content for this lesson.

Name
Multiply Using Expanded Form

Record the product. Use expanded form to help.

1. $7 \times 14=$ \qquad 2. $8 \times 43=$ \qquad
$7 \times 14=7 \times(10+4)$
$=(7 \times 10)+(7 \times 4)$
$=70+28$
$=98$
2. $6 \times 532=3,192$
3. $5 \times 923=$ \qquad

Problem Solving

5. The fourth-grade students at Riverside School are going on a field trip. There are 68 students on each of the 4 buses. How many students are going on the field trip?
6. There are 5,280 feet in one mile. Fatima likes to walk 5 miles each week for exercise. How many feet does Fatima walk each week?

272 students
7. Write Math Explain how you can find 3×584 using expanded form.

Check students' work. \qquad
\qquad

Lesson Check

8. Write an expression that shows how to multiply 7×256 using expanded form and the Distributive Property.
$(7 \times 200)+(7 \times 50)+(7 \times 6)$
9. Sue uses the expression $(8 \times 3,000)+(8 \times 200)+(8 \times 9)$ to help solve a multiplication problem. What is Sue's multiplication problem?
, - , - , A o o

Spiral Review
10. What is another way to write 9×200 ?

Possible answer: 18 hundreds
Possible answer: 4 ten thousands
13. List these numbers in order from least to greatest.
8,251; 8,125; 8,512

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

SNAPSHOT

Mathematical Standards

- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Attend to precision.
- Look for and make use of structure.
- Model with mathematics.
- Construct arguments and critique reasoning of others.

I Can Objective

I can use different strategies such as place value and partial products to multiply by a 1 -digit number.

Learning Goal

Use place value and partial products to multiply a multi-digit number by a 1 -digit number.

Language Objective

Student pairs explain to each other how to use place value and partial products to multiply by a 1 -digit number.

MATERIALS

- MathBoard

ACROSS THE GRADES

Before	Grade 4	After
Multiply a one-digit whole number by a multiple of 10 , up to 90 , or a multiple of 100, up to 900 , with procedural reliability.	Multiply two whole numbers, up to three digits by up to two digits, with procedural reliability.	Multiply and divide a multi-digit number with decimals to the tenths by one-tenth and one- hundredth with procedural reliability.

ABOUT THE MATH

Using Area Models

Students have used the area model to help them multiply using expanded form. In this lesson, students use the area model to connect place value and multiplication.

- Students have written the expanded form for a number starting with the greatest place and have multiplied starting with the greatest place.
- This lesson shows students how to multiply and record partial products for the area model starting with the greatest place.
- While partial products can be written in any order, it is easier for students to connect the recording to the area model if they start with the greatest place.

DAILY ROUTINES

Problem of the Day 3.7

Tabitha runs 34 miles every week. How many miles will she run in a month? (Assume there are 4 weeks in a month.) 136 miles

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Have students practice basic facts by finding the unknown factor.

```
9\times\square=273 8 = प= 324 3 < प= 155
5\times\square=357 7 \ प= 213 2 < प= 147
4\times\square=123 \square < 9=637 \square < 9 = 819
```


FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Ask two students to come to the board and model 2×128. One student draws a sketch of a rectangular model. The other student draws a quick picture for base-ten blocks.

- How do you break the numbers apart before you start either model? You break the greater factor into its expanded form: $100+20+8$.
- How are these drawings the same? Possible answer: They both show two sets of 1 hundred, 2 tens, and 8 ones.

Ask student volunteers to explain each part of their models.

(1) Engage

with the Interactive Student Edition

I Can Objective

I can use different strategies such as place value and partial products to multiply by a 1-digit number.

Making Connections

Invite students to tell you what they know about 3-digit numbers.

- What are examples of 3-digit numbers in the real-world? Possible answers: number of students in a school, temperature of an oven
- 125 is a 3 -digit number. Where would the 5 go in a place-value chart? ones
- Where would the $\mathbf{2}$ go? tens
- What about the $\mathbf{1 ?}$? hundreds

Learning Activity

A flower garden is being expanded to add 7 rows for new seedlings. Each of the new rows will have 137 seedlings. How many new seedlings will be planted in the garden?

- How many rows of seedlings are going to be planted in the flower garden? 7 rows
- How many seedlings will be in each row? 137 seedlings
- What is one way to multiply 137 by 7? Add 7 groups of $137.137+137+137+137+137$ $+137+137$

(2) Explore

Unlock the Problem

Students connect place value and the Distributive Property to recording partial products. The rectangular model is visually related to the Distributive Property. When students show the partial products for a multiplication example, they can start with any place. However, mathematical convention suggests that you start with the greatest place, in this case the hundreds place. This also visually relates to the Distributive Property that is written starting with the greatest place.

- Why are you multiplying the hundreds first? Since the model is arranged from left to right, I multiply the hundreds first.
- What is the value of the digit 1 in 182? 100
- Are you multiplying $\mathbf{6 \times 1}$ or $6 \times 100 ? 6 \times 100$
- What is the value of the digit 8 in 182? 80
- What factors are you multiplying when you multiply the tens? 6×80
- When do you regroup? When I add the partial products.
After students complete the steps, compare the final answer to the estimate.

MP) Attend to precision.

Use Math Talk to focus on students' understanding of using the Distributive Property to find a product.

- What is the first step? Break apart 257 into hundreds, tens, and ones.
- What would you do with the parts of 257? Multiply each part by 4.
- What is the last step? Add the partial products.

Name

Multiply Using Partial Products

(I Can use different strategies such as place value and partial products to multiply by a 1 -digit number.

\#UNLOCK the Problem

How can you use what you know about the Distributive Property to break apart numbers to find

- How can you write 182 as a sum products of 3-digit and 1-digit numbers? of hundreds, tens, and ones?

Use place value and partial products.
Multiply. $6 \times 182 \quad$ Estimate. $6 \times 200=1,200$
STEP 1 SHADE THE MODEL
THINK AND RECORD
STEP 1

STEP 2
 $\begin{array}{r}182 \\ \times \quad 6 \\ \hline\end{array}$

Multiply the tens. 6×8 tens $=48$ tens

STEP 3

STEP 4

Multiply the ones 6×2 ones $=12$ ones

Example

Use place value and partial products.
Multiply. $2 \times 4,572 \quad$ Estimate. $2 \times 5,000=10,000$

4,572	
+ 2	
8,000	$\leftarrow 2 \times 4$ thousands $=8$ thousands
1,000	$\leftarrow 2 \times 5$ hundreds $=1$ thousand
140	$\leftarrow 2 \times 7$ tens $=1$ hundred 4 tens
$\begin{array}{r} \\ +\quad 4 \\ \hline\end{array}$	$\leftarrow 2 \times 2$ ones $=4$ ones
9,144	\leftarrow Add the partial products.

Share and Show Math

1. Use the model to find 2×137.

Estimate. Then record the product. Possible estimates are given

Ready for More

Visual Individual

- Challenge students to practice multiplying 3-digit numbers.
- Give students the problems shown below.
- Have students use the digits given to the left of the problems to fill in the missing digits in the multiplication problems.

1. 5,4 , and 3

$$
5 \times 3.42=1,710
$$

2. 8,4 , and 1
$\underline{4} \times 3 \underline{8} \underline{1}$ $=1,524$
3. 2,9 , and 6
$\underline{6} \times \underline{2} 7 \underline{9}=1,674$

Example

When multiplying with 4-digit numbers as in the example, have students tell what factors are being multiplied for each partial product. $2 \times 4,000,2 \times 500,2 \times 70,2 \times 2$

(3) Explain

Share and Show

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

MP Construct arguments and critique reasoning of others.

Use Math Talk to focus on students' understanding of how using place value and expanded form helps to make multiplication easier.

- What method can you use to find the partial products when you use expanded form? Possible answer: mental math
Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

If
a student misses the checked problems

Then
Differentiate Instruction with

- Reteach 3.7
- Waggle

(4) Elaborate

On Your Own

If students complete the checked problems correctly, they may continue with the remaining problems.

MP) Look for and make use of structure.

Problems 12-15 Students are required to use higher order thinking skills as they identify the missing digit. You may wish to encourage students to write the partial products as they work to help them find the missing digit.

- How can estimation help you solve

 Problem 14? I can round both the factor and the product to the nearest hundred. Then I can find what number times 400 equals 2,400.Students can use patterns or mental math to determine the factor is 6 .

Common Errors

Error Students may misalign the partial products.

Example

Springboard to Learning After students write the first partial product, tell them to draw a line to separate the ones place from the tens place. Then, they align the ones place of each partial product using the line.

On Your Own

Estimate. Then record the product. Possible estimates are given.

5. Estimate: $\quad \$ 200$	6. Estimate: \$ \$4,500	7. Estimate: 3,600
\$53	\$473	608
+ 4	$\begin{array}{r} \\ \times \quad 9 \\ \hline\end{array}$	+ 6
200	3,600	3,600
$\begin{array}{r} \\ +\quad 12 \\ \hline\end{array}$	630	0
\$212	+ $+\quad 27$	$\begin{array}{r} \\ +\quad 48 \\ \hline\end{array}$
	\$4,257	3,648

Practice: Copy and Solve Estimate. Then record the product.
Possible estimates are given.
8. 2×78

160; 156
9. $2 \times \$ 210$ \$400; \$420
10. $9 \times \$ 682$
11. $8 \times 8,145$
(MP) Find the missing digit.
\$6,300; $\$ 6,138$ 64,000; 65,160
14.

15. $\begin{array}{r}3,748 \\ \times \quad 4 \\ \hline 14,992\end{array}$
16. A store bought 9 cases of light bulbs in May and 8 cases in June. There are 48 light bulbs in a case. How many light bulbs did the store buy in May and June?

816 light bulbs

18. Coach Ramirez bought 8 cases of bottled water for a road race. There are 24 bottles in each case. After the race, 34 bottles of water were left. How many bottles were used at the race? Explain.
158 bottles; Possible explanation: I first found out how many bottles of water were bought;
$8 \times 24=192$. There were 34 bottles left over, so I subtracted 34 from 192 to find the number of bottles used; $192-34=158$.

Chapter 3•Lesson 7115

Meeting Individual Needs

Problem Solving • Applications

19.

(MP) Look at the picture. Kylie has 832 songs on her portable media player. Lance has 3 times as many songs. How many fewer songs can Lance add to his player than Kylie can add to hers?

1,664 fewer songs
20. Denzel wants to buy the new portable media player shown. He has 5 times as many songs as Merlyn. Merlyn has 1,146 songs. Will all of his songs fit on the portable media player? How many songs does Denzel have?

yes; 5,730 songs
21. The sum of a 3-digit number and a 1 -digit number is 217 . The product of the numbers is 642. If one number is between 200 and 225, what are the numbers?

214; 3
22. Mrs. Mohammed bought 6 gallons of juice for a party. Each gallon has 16 cups. After the party, 3 cups of juice were left over. At the party, how many cups did people drink? Show your work and explain how you found your answer.
93 cups; Possible explanation: I found the
number of cups of juice Mrs. Mohammed
bought. Then I subtracted the 3 cups of juice
that were left over. $6 \times 16=96 ; 96-3=93$

116 Go Math! Grade 4

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!"

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Activities

Meaningful and fun math practice

Problem Solving Applications

(MP) Model with mathematics.

The picture of the portable media player provides information needed for Problems 19 and 20. For Problem 20, it is important to know that there is a limit to the number of songs the player can hold.
To find the numbers in Problems 21, students may find using reasoning and guessing and checking are helpful strategies.

Math on the Spot Use this video to help students model and solve this type of problem.

Problem 22 Students should recognize this as a multi-step problem involving multiplication and then subtraction. Some students may mistakenly subtract first, and thereby multiply 13 by 6 , which will achieve an answer of 78 cups. Other students might follow the correct steps but calculate incorrectly. Students using place value and partial products to multiply should be encouraged to make sure they are aligning the digits in the appropriate place value.

(5) Evaluate
 Formative Assessment

I Can Objective

Have student pairs explain to each other in order to demonstrate the skill for the I Can statement.

I can use different strategies such as place value and partial products to multiply by a 1-digit number. To do this I can . . . first break apart the greater number into thousands, hundreds, tens, and ones. Then I can multiply each part by the other factor. Finally, I can add the partial products.

Exit Ticket

Explain how you can find 4×754 using two different methods.

Practice and Homework

Multiply Using Partial Products

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine students' understanding of content for this lesson.

Multiply Using Partial Products

Possible estimates are given.
Estimate. Then record the product.

1. Estimate: 1,200
2. Estimate: 1,800
3. Estimate: $\$ 500$
4. Estimate: $\mathbf{5 , 6 0 0}$

243
$\times \quad 6$
1,200
240
$+\quad 18$
1,458

$\begin{array}{r}640 \\ \times \quad 3 \\ \hline 1,920\end{array}$
$\begin{array}{r}\$ 149 \\ \times \quad 5 \\ \hline \$ 745\end{array}$
721
$\begin{array}{r}8 \\ \hline 5,768\end{array}$
5. Estimate: $\underline{1,200}$
6. Estimate: $\mathbf{\$ 2 , 4 0 0}$
7. Estimate: $\underline{2,000}$
8. Estimate: $\mathbf{7 , 2 0 0}$
837
$\begin{array}{r}293 \\ \times \quad 4 \\ \hline 1,172\end{array}$
$\begin{array}{r}\$ 416 \\ \times \quad 6 \\ \hline \$ 2,496\end{array}$
$\begin{array}{r}961 \\ \times \quad 2 \\ \hline 1,922\end{array}$
$\begin{array}{r}\times \quad 9 \\ \hline 7,533\end{array}$

Problem Solving

9. A maze at a county fair is made from 275 bales of hay. The maze at the state fair is made from 4 times as many bales of hay. How many bales of hay are used for the maze
10. Pedro gets 8 hours of sleep each night. How many hours does Pedro sleep in a year with 365 days?
at the state fair?

1,100 bales
\qquad 2,920 hours
11. Write Math Explain how you can find 4×754 using two different methods.

Check students' work.

PROFESSIONAL LEARNING

Teacher: What method did you use to solve Problem 6?
Luca: I used place value and partial products.
Mirella: I used expanded form.
Teacher: What do the methods have in common?
Luca: With both methods, I need to understand the value of each place: hundreds, tens, and ones. I multiply the value of each digit of the greater number by the other factor.

Teacher: How are the methods different?
Luca: When using partial products, you multiply the hundreds first, then the tens, then the ones, and then add the partial products.
Mirella: With expanded form, I first find the value of each digit of the greater number. So, the equation is $416=400+10+6$. Then, I rewrite the multiplication using 400,10 , and 6.

Lesson Check

12. A passenger jet flies at an average speed of 548 miles per hour. At that speed, how many miles does the plane travel in 4 hours?

Spiral Review

14. The school fun fair made $\$ 1,768$ on games and $\$ 978$ on food sales. How much money did the fun fair make on games and food sales?
\qquad
15. A National Park covers 218,375 acres. What is this number written in expanded form?
$200,000+10,000+8,000+300+70+5$

Last year a business had profits of $\$ 8,000$. This year its profits are 5 times as great. What are this year's profits?
13. Use the model to find 3×157.

\qquad
15. Use the table below.

State	Population
North Dakota	646,844
Alaska	698,473
Vermont	621,760

List the states from least to greatest population.
\qquad
\qquad
\qquad \$40,000

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance

 Multiply Using Mental Math
SNAPSHOT

Mathematical Standards

- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Model with mathematics.
- Attend to precision.
- Construct arguments and critique reasoning of others.
- Look for and make use of structure.

I Can Objective

I can multiply numbers using mental math and properties of operations.

Learning Goal

Use mental math and properties to multiply a multi-digit number by a 1-digit number.

Language Objective

Students collaborate to draw a thought bubble and write inside how to use mental math and properties to help multiply numbers.

MATERIALS

- MathBoard
- index cards
- paper bags

ACROSS THE GRADES

Before	Grade 4	
Multiply a one-digit whole number by a multiple of 10 , up to 90 , or a multiple of 100, up to 900 , with procedural reliability.	Multiply two whole numbers, up to three digits by up to two digits, with procedural reliability.	Multiply and divide a multi-digit number with decimals to the tenths by one-tenth and one- hundredth with procedural reliability.

ABOUT THE MATH

Why Teach This

The focus of this lesson is strategies for mental math. While one student may be able to perform a computation mentally, another student may need to use paper and pencil to perform the same computation.

Students need lots of experience breaking numbers apart to develop number sense. This building of number-sense skills will help students develop mental math strategies that work for them.

Properties are also an important part of developing mental math skills. Knowing how to change the order and grouping of numbers will help students recognize situations where mental math can be used instead of paper and pencil. Mental math is a real-world skill, not just a math class skill.

DAILY ROUTINES

Problem of the Day 3.8

Mr. Beck usually drives 182 miles each week. Last week, he drove 3 times as many miles as he usually drives in a week. Estimate the number of miles he drove. Possible answer: about 600 miles

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Write the following examples on the board. Have students practice multiplying using patterns.

$$
\begin{array}{ll}
1 \times 25=25 & 1 \times 100=100 \\
2 \times 25=50 & 2 \times 100=200 \\
3 \times 25=75 & 5 \times 100=500 \\
4 \times 25=100 & 6 \times 100=600 \\
2 \times 100=200 & 5 \times 100=500 \\
2 \times 200=400 & 5 \times 200=1,000 \\
2 \times 300=600 & 5 \times 300=1,500 \\
2 \times 400=800 & 5 \times 400=2,000
\end{array}
$$

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Discuss students' experiences with the value of a quarter and adding quarters. Use the iTools to show 1 quarter for the students.

- What is the value of one quarter? 25 cents

Show 2 quarters.

- What is the total value of two quarters? Explain.

50 cents; Possible answer: skip count by 25 s; $25,50$.

(1) Engage

with the Interactive Student Edition

I Can Objective

I can multiply numbers using mental math and properties of operations.

Making Connections

Invite students to tell you what they know about the various ways to multiply numbers.

- Have you ever done a math problem in your head, without pencil, paper, or a calculator? Tell about it. Possible answer: determining the total cost of two or more items
- How did you perform multiplication in these situations? Possible answer: estimated

Learning Activity

A neighborhood wants to install 3 new fire hydrants. Each hydrant costs $\$ 152$. How much will the neighborhood spend on new fire hydrants?

- What is the cost of 1 fire hydrant? $\$ 152$
- How many total fire hydrants do they wish to install? 3 fire hydrants
- How can you find the total cost of 3 fire hydrants? Multiply $\$ 152$ by 3.
- What is one way to find $\mathbf{3 \times \$ 1 5 2}$? Use place value and partial products. $(3 \times 100)+(3 \times 50)$ $+(3 \times 2)$

(2) Explore

Unlock the Problem

Model with mathematics.

Have students read the problem. Students should understand that they are multiplying the number of sections times the number of groups in each section times the number of seats in each group: sections \times groups \times seats.

- Which factors were multiplied first? 4 and 25
- How can you use mental math to multiply 4×25 ? Possible answer: skip count by 25 s
- How does the Commutative Property help you solve this problem? Possible answer: I can change the order of the factors to multiply factors that I know first. The product stays the same.

MP) Look for and make use of structure.

Use the Math Talk to focus on students' understanding of how to use one product to find another.

Try This!

Example A uses the Associative Property; the parentheses are moved to change the grouping of the factors.

- Explain how to multiply 10 times

10 mentally. Possible answer: skip count by 10s
Example B uses the Commutative Property; the factors are written in a different order. It also uses the Associative Property; the parentheses are moved to change the grouping of the factors. Have students suggest ways to multiply 4×25 mentally. Discuss how the Associative Property helps to solve the problem.

Name

Multiply Using Mental Math

(I Can multiply numbers using mental math and properties of operations.

Chapter 3•Lesson 8119

ML Multilingual Support

STRATEGY: Scaffold Language

Write on the board how many and how much.

- Then write the following sentence frames:

How many \qquad s are in this class?
How much \qquad do we spend on math each day?

- Say, Notice that how many is used with plural words-words that usually end in s-and how much is used with words that are not plural.
- Using the sentence frames, students take turns asking a partner the two questions and then answering the questions.

More Strategies Choose the strategy that works best with the
numbers in the problems.

Example

- What property is being used in Examples C and D? \qquad the Distributive Property

Share and Show matid

1. Break apart the factor 112 to find 7×112
by using mental math and addition.
$7 \times 112=7 \times(100+12)$
$=\quad(7 \times 100)+(7 \times 12)$
$=\quad 700+84$
\qquad

120 Go Math! Grade 4

Example

Explain that the examples show different mental math strategies for multiplying.

Example A

- Why might the words "friendly numbers" be used? The numbers are easy to multiply mentally.
- How does breaking 24 into $\mathbf{6} \mathbf{4}$ help?

Possible answer: I can use the 4 to multiply 250 , which is easy. Then I can finish multiplying with the 6 .

Example B

- With what kind of numbers can you easily use halving? even numbers
- When you break 16 into 2 and 8, what is the new multiplication expression for the example? Possible answers: $8 \times 50 \times 2 ; 8 \times 2 \times 50$
Example C
- How could you break apart 625 into hundreds and tens and ones? $600+20+5$

Example D

- What expression are you using in place of 398? 400-2

MP Look for and make use of structure.

- When multiplying mentally, what friendly numbers are helpful to look for to multiply by a one-digit number? Possible answer: numbers that have only one-nonzero digit, 25, and 250

(3) Explain

Math

Share and Show

 BoardThe first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

Common Errors

Error When using the Distributive Property with subtraction, students subtract the wrong amount.
Example For $5 \times(400-2)$, students write (5×400) -2 .

Springboard to Learning After setting up the initial expression, $5 \times(400-2)$, have students draw arrows to remind them that each number must be multiplied by 5 .

Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

© Quick Check MTSS RTI

If a student misses the checked problems

Then Differentiate Instruction with

- Reteach 3.8
- Waggle

MP) Construct arguments and critique reasoning of others.

Use Math Talk to focus on students' understanding of using properties
and operations.

- What property did you use with both the addition and subtraction strategies? the Distributive Property
- For each strategy, did you add or subtract partial products? Why? Possible answer: In the addition strategy, I added partial products because I wrote one factor as the sum of two numbers. In the subtraction strategy, I subtracted partial products because I wrote one factor as the difference of two numbers.

(4) Elaborate

On Your Own

If students complete the checked problems correctly, they may continue with the remaining problems.

MP) Attend to precision.

Problems 12 and 13 Students are required to apply the mental math strategies in this lesson in a different way.
In Problem 12, students can use the Distributive Property to think: 40 groups of $21=840$, so 42 groups of $21=840+(2$ more groups of 21).
In Problem 13, students generalize that if one factor is halved and the other is doubled, the result is an equivalent expression.

Name
Math Talk: Possible explanation: With both strategies, I break apart a number, use the Find the product. Tell which strategy you used. Distributive Property, and then add or subtrac Possible strategies are given.
2. $4 \times 6 \times 50 \quad 1,200$
83. $5 \times 420 \quad 2$,
2,100
©4. $6 \times 298 \quad 1,788$

Commutative Property
use addition
use subtraction

On Your Own

MP) Construct arguments and critique reasoning of others.

 How is using an addition strategy related to using a subtraction strategy?Find the product. Tell which strategy you used.

$$
\text { 7. } 8 \times 25 \times 23 \quad 4,600
$$

```
5. \(14 \times 50700\)
Possible strategie 6. \(32 \times 25800\)
```

halving and doubling friendly numbers
friendly numbers

Use a strategy to find the product.
8. 16×400
9. $3 \times 31 \times 10$
10. 3×199
3×199
597
11. $3 \times 1,021$
6,400
930
597
3,063Use mental math to find the unknown number.
12. $21 \times 40=840$, so $21 \times 42=882$.
13. $9 \times 60=540$, so $18 \times 30=540$
14. The science museum sells dinosaur models to schools and libraries for $\$ 107$ each. The town library buys 3 models. The town elementary school buys 5 models. What is the total cost of the models the town buys? \$856
15. Russell and Farrah each buy 6 books of ride tickets at the fair. Each book has 15 tickets. How many tickets do they buy altogether?

180 tickets

Chapter 3 •Lesson 8121

Problem Solving • Applications

Use the table for 16-18.
16. Three thousand, forty-three people buy tickets at the gate for Section N and one hundred people buy tickets at the gate for Section L. How much money is collected for Section N and Section L at the gate?
17. N (NP) Tina and 3 of her friends buy the full season
plan for Section M. If there are 45 games in the full

Arena Ticket Prices Per Game			
Section	Full Season	15-Game Plan	Gate Price
K	$\$ 44$	$\$ 46$	$\$ 48$
L	$\$ 30$	$\$ 32$	$\$ 35$
M	$\$ 25$	$\$ 27$	$\$ 30$
N	$\$ 20$	$\$ 22$	$\$ 25$

\$4,500
18. When the full season tickets first went on sale, 2,000 full season tickets sold for Section N. Two weeks after the tickets first went on sale, another 1,500 full season tickets were sold for Section N. How much money was spent on full season tickets for Section N in total? How much more money was spent when the tickets first went on sale than after the first two weeks? \$70,000; \$10,000 more
19. Jose and Daru are given an equation.
$6 \times 407=2,442$
Jose says the equation is false. Daru says the equation is true. Who is correct? Explain.

Daru; Possible explanation: Since 407
is 7 more than $400, I$ used addition as
my strategy. $6 \times(400+7)=(6 \times 400)+$
$(6 \times 7)=2,400+42=2,442$

122 Go Math! Grade 4

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!'

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Activities

Meaningful and fun math practice

Problem Solving Applications

Problem 16 Students are required to find the number for the word form and use it to multiply.
Problem 17 This is a multi-step problem. Students can first find the cost of one game for 4 friends using the information in the table.

Problem 18 Students are required to find the total cost of two groups of tickets for the same section. To answer the questions the problem asks, students need to find the sum of these totals and then the difference.
Math on the Spot Use this video to help students model and solve this type of problem.

Problem 19 Students should recognize the expression 6×407 as illustrating the Distributive Property with addition, which in this case is used as a strategy for multiplication. You may wish to tell students that the expression shows the breaking apart of one of the factors to make computation easier. Encourage students to check their work.

(5) Evaluate
 Formative
 Assessment

I Can Objective

Have students collaborate to draw a thought bubble and write a response to demonstrate the skill for the I Can statement.
I can multiply numbers using mental math and properties of operations. To do this I can . . .
break apart a number to make numbers that are easy to multiply mentally.

Exit Ticket

Show how to multiply 6×298 using friendly numbers and then using properties and mental math. Write about which method you like better and why.

Practice and Homework

Multiply Using Mental Math

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine students' understanding of content for this lesson.

Multiply Using Mental Math

Find the product. Tell which strategy you used.
Possible strategies are given.

1. 6×297 Think: $297=300-3$ $6 \times 297=6 \times(300-3)$
$=(6 \times 300)-(6 \times 3)$
$=1,800-18$
1,782; $\quad=1,782$
use subtraction
2. $14 \times 25 \times 4$
3. 8×604
4. 50×28
$\underline{1,400 ; \text { Associative } \quad \text { 4,832; use addition } \quad 1,400 \text {; halving and doubling }}$
Property

Problem Solving

5. Section J in an arena has 20 rows. Each row has 15 seats. All tickets cost $\$ 18$ each. If all the seats are sold, how much money will the arena collect for Section J?
\$5,400
. At a high-school gym, the bleachers are divided into 6 equal sections. Each section can seat 395 people. How many people can be seated in the gym?
\qquad
2,370 people
6. Write Math Show how to multiply 6×298 using friendly
numbers and then using properties and mental math. Write about which method you like better and why. Check students' work.

PROFESSIONAL LEARNING

Discuss students' answers to Problem 2.

Teacher:	How can we multiply $14 \times 25 \times 4$?
Jana:	I can multiply 25×4 to get 100 , and 100×14 to get 1,400.
Kevin:	I couldn't multiply 14×25 in my head.
Teacher:	So, how would you do this in your head?
Kevin:	I broke apart 14 into $10+4$. Then I multiplied $10 \times 25=250$ and $4 \times 25=100$. I added $250+$ $100=350$. I multiplied $350 \times 4=1,400$.
Liza:	I did that too, but I couldn't multiply 350×4 in my head.
Teacher:	So, how would you do this in your head?

Liza:	I broke apart 350 into $300+50$. Then I multiplied $300 \times 4=1,200$ and $50 \times 4=200$. Then I added $1,200+200=1,400$.
Teacher:	That's great thinking everyone. Who used another way?
Diego:	I first multiplied $25 \times 4=100$. Then I broke apart 14 into 10 and 4 . Then I multiplied $100 \times 10=1,000$ and $100 \times 4=400$. Then I added $1,000+400=1,400$.
Teacher:	What property did you use?
Diego:	I used the Commutative and Distributive Properties.
Teacher:	That is great thinking too. As we just discussed, there are many different ways to use mental math when we multiply.

Lesson Check

8. Pencils come in cartons of 24 boxes. A school bought 50 cartons of pencils for the start of school. Each box of pencils cost $\$ 2$. How much did the school spend on pencils?
\$2,400

Spiral Review

10. Alex has 175 baseball cards. Raul has 3 times as many baseball cards as Alex. How many fewer cards does Alex have than Raul?
\qquad
11. At one basketball game, there were 1,207 people. At the next game, there were 958 people. How many people were at the two games?
12. The school also bought 195 packages of markers. There are 6 markers in each package. How many markers did the school buy?

1,170 markers

11. A theater seats 1,860 people. The last 6 shows have been sold out. Estimate the total number of people attending the last 6 shows.

Possible answer: fewer than 12,000
13. Tell whether each equation is true or false.

a. $4 \times 3=3+3+3$	false
b. $2 \times 6=6+6$	true
c. $8+8+8+8+8+8+8+8=8 \times 2$	
	false
d. $5+5+5+5+5=5 \times 5$	true

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance

 Multi-Step Multiplication Problems
SNAPSHOT

Mathematical Standards

- Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Model with mathematics.
- Attend to precision.
- Reason abstractly and quantitatively.

I Can Objective

I can solve real-world problems involving multiplication of whole numbers.

Learning Goal

Use the draw a diagram strategy to solve multi-step problems.

Language Objective

Students explain to a partner how to use the draw a diagram strategy to solve a multi-step multiplication problem.
MATERIALS

- MathBoard
- two-color counters

Before	ACROSS THE GRADE 4	After
Solve one- and two-step real-world problems involving any of four operations with whole numbers.	Solve real-world problems involving multiplication and division of whole numbers including problems in which remainders must be interpreted within the context.	Solve multi-step real-world problems involving any combination of the four operations with whole numbers, including problems in which remainders must be interpreted within the context.

ABOUT THE MATH

Why Teach This

This lesson involves the problem solving strategy draw a diagram.

- A diagram organizes information in a problem and helps students visualize the problem. If a student draws a diagram incorrectly, the answer to the problem may also be incorrect.
- Grid paper is a useful tool for students to use when they are drawing diagrams. It not only helps them keep track of units, but also helps them draw a neater diagram.
- The problems in the lesson are multi-step problems. It is helpful for students to record the steps of the problem in the order they should be performed.

DAILY ROUTINES

Problem of the Day 3.9

How many zeros must be in the product of 1,000 and any whole number greater than zero? at least 3

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Vocabulary Builder

Write multiplication on the board. Have students think of as many words as they know that relate to this term.
Words that could be included are:
partial product, product, factor, Distributive Property, round, estimate, Zero Property of Multiplication, Identity Property of Multiplication, Commutative Property of Multiplication, Associative Property of Multiplication, mental math.

- Write the words suggested by the students to the side of the board.
- Ask students to make logical categories as groupings for these words.
- Write the suggested category headings and include a description beneath each.
- Students should then sort the words into the categories they think fit best. They should be able to support their groupings.
- Write the words under their respective category heading.

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Introduce the lesson by asking students:

- Have you ever wondered how big an orca is? The orca is the largest species in the dolphin family. A male orca can be 22 to 27 feet long and weigh 8,000 to 12,000 pounds. A female orca can be 17 to 20 feet long and weigh 3,000 to 8,000 pounds. They have teeth that can be 4 inches long (10 centimeters). Orcas travel in pods (family groups). They communicate with a wide variety of distinctive sounds that the members of the pod can recognize, even at a distance.
with the Interactive Student Edition

I Can Objective

I can solve real-world problems involving multiplication of whole numbers.

Making Connections

Invite students to tell you what they know about using diagrams or pictures to solve problems.

How can drawing a diagram or picture help you solve a one-step multiplication problem such as 8×4 ? You can draw a diagram of 8 groups of 4 or 8 rows of 4 and find the total of the items.

Learning Activity

A company provides blimp rides on two different blimps. The yellow blimp sits 44 passengers and makes 6 trips each day. The blue blimp only sits 32 passengers but makes 8 trips each day. Assuming both blimps take all of their scheduled trips at full capacity, how many more passengers ride the yellow blimp than the blue blimp each day?

- What are you trying to find? how many more passengers will be on the yellow blimp each day than on the blue blimp
- What operation can you use to find the total passengers on each blimp? multiplication
- What operation can you use to find the difference in total passengers between the two blimps? subtraction

(2) Explore

Unlock the Problem

Attend to precision.
After students read the problem, discuss how they will use the information in the diagram to answer the question. Be sure students understand that they are looking for the number of seats that are not in the splash zone.

- Why do you multiply to find the number of seats in the splash zone? I know the number of rows and the number of seats in each row. I need to combine equal groups, so I multiply to find the total.

Higher-Order Thinking

While most students will solve this with three steps, some students may enjoy using algebraic notation to write one equation that could be used to represent the problem.

- How can you write just one equation that could be used to solve the problem?
$(9 \times 18)-(6 \times 8)=n$, where n represents the number of seats not in the splash zone
(MP) Reason abstractly and quantitatively.
- How can you check that your answer is reasonable? Possible answer: Because I am finding the number of seats not in the splash zone, I know that this number must be less than the total number of seats. I can round the total number of seats and the number of seats in the splash zone and estimate the difference.

Multi-Step Multiplication Problems

(I Can solve real-world problems involving multiplication of whole numbers.

\# UNLOCK the Problem
At the sea park, one section in the stadium has 9 rows with 18 seats in each row. In the center of each of the first 6 rows, 8 seats are in the splash zone. How many seats are not in the splash zone?

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?
I need to find the number of seats that
are not in the splash zone.

What information do I need to use?
There are 9 rows with \qquad
\qquad _seats in each row of the section.
There are 6 rows with 8 each row of the splash zone.

How will I use the information?
I can multiply to find both the number of seats in the section and the number of seats in the splash zone.

Solve the Problem
Solve the Problem
9 rows of 18 seats. In the center, I outlined a section to show the 6 rows of 8 seats in the splash zone.

1. What else do you need to do to solve the problem?

Possible answer: Subtract the number of seats in the splash zone from the total number
of seats in the section to find the number of seats not in the splash zone. $162-48=114$.

ML Multilingual Support

STRATEGY: Frontload

Build the background students need to visualize the context for word problems related to seating, sections, and rows.

- Show the class a diagram or picture of a theater with sections of seats and rows. Point out how it is organized. Explain attendees are seated according to section and row.
- Pair students. Have them think of a place they have seen or been with sections of seats and rows and draw a diagram of that place.

Try Another Problem

At the sea park, one section of the shark theater has 8 rows with 14 seats in each row. In the middle of the section, 4 rows of 6 seats are reserved. How many seats are not reserved?

Read the Problem	Solve the Problem
What do I need to find? I need to find the number of seats that are not reserved.	I drew a rectangle to show 8 rows of 14 seats. In the middle 4 rows, I outlined a section to show the 4 rows of 6 seats that are reserved. 14 seats
What information do I need to use? There are 8 rows of 14 seats in the section. There are 4 rows of 6 seats that are reserved.	
How will I use the information? I can multiply to find both the number of seats in the section and the number of seats that are reserved.	First, I found the total number of seats in the section. $8 \times 14=112$ Then, I found the number of reserved seats. $4 \times 6=24$ Finally, I subtracted the number of reserved seats from the total number of seats to find the number of seats not reserved. $112-24=88$ So, 88 seats are not reserved.
2. How did your diagram help you solve the problem? Reason abstractly and quantitatively. How do you know your answer is correct?	
Possible answer: It helped me to visualize the	
inverse operation and add $88+24=112$. The result is the total number of seats.	

126 Go Math! Grade 4

Try Another Problem

Have students answer the questions in the graphic organizer and then draw a diagram. Students should be able to describe how they solved the problem.

- Why is the strategy draw a diagram a good way to solve this problem? A diagram helps you visualize how the reserved seats relate to the seats that are not reserved in the section.

MP) Reason abstractly and quantitatively.

Use Math Talk to help students recognize that they can check their answer by adding it to the number of reserved seats. The sum should be equal to the total number of seats.

- After you found the number of reserved seats, what operation did you use to find the number of seats that are not reserved? subtraction
- What operation is the inverse of subtraction? addition
- What numbers will you add to check your answer? Possible answer: I will add my answer, the number of seats that are not reserved, and the number of reserved seats.

MP Attend to precision.

- Suppose there were two sections of reserved seats. How would your calculations be different? Possible answer: I would have to count or multiply to find the number of seats in each reserved section, and then subtract each from the total number of seats. The final difference would be the number of seats that were not reserved

Common Errors

Error Students may not read the problem correctly.

Example Students write the number of reserved seats instead of the seats that are not reserved.

24 seats

Springboard to Learning Have students circle the question in the problem and then rewrite it in their own words.

(3) Explain

Share and Show

The first problem is connected to the learning model. Have students use the MathBoard to explain their thinking. As you walk around the room, check students' diagrams to be sure that they have outlined 8 rows of 14 for Section A and 6 rows of 16 for Section B.
After students complete Problem 2, you may wish to ask this question.

Attend to precision.

- Why didn't you get the same number of people for Problems 1 and 2? In Problem 2, Section A has 14 fewer people but Section B has 16 more people. 16-14 = 2; there would be 2 more people seated.
Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

Quick Check MTSS RtI

If
a student misses the checked problems

Then
Differentiate Instruction with

- Reteach 3.9
- Waggle

1. The seats in Sections A and B of the stadium are all taken for the last show. Section A has 8 rows of

Unlock the Problem

$\sqrt{ }$ Use the Problem Solving MathBoard $\sqrt{ }$ Underline important facts. $\sqrt{ }$ Choose a strategy you know.

14 seats each. Section B has 6 rows of 16 seats each.
How many people are seated in Sections A and B for the last show?
First, draw and label a diagram. Next, find the number of seats in each section

There are 208 people seated in Sections A and B for the last show.
© 2. What if Sections A and B each had 7 rows? How many people would have been seated in Sections A and B?
\qquad
(d) 3. Mei's vegetable garden has 13 rows with 8 plants in each row. Mei plans to plant peppers in the first 2 rows and the last 2 rows of the garden. The rest of the rows will be tomatoes. How many tomato plants will Mei plant?

72 tomato plants
4. There are 8 rows of 22 chairs set up for an awards ceremony at the school. In each row, the 2 chairs on each end are reserved for students receiving awards. The rest of the chairs are for guests. How many chairs are there for guests?

144 chairs

Show the Math
Demonstrate Your Thinking

Chapter 3•Lesson 9127

Meeting Individual Needs

On Your Own

Use the graph for problems 5-6.
5. Mr. Torres took his students to the dolphin show. Each row in the stadium had 11 seats. One adult sat at each end of a row, and each group of 4 students was seated between 2 adults. Mr. Torres sat by himself. How many adults were there?
6. Write Math Another stadium section has 24 rows of 10 seats each. Describe at least two ways Mrs. Ahmed's class can sit if an equal number of students sits in each row.

Possible answers: 4 rows of 9 students; 6 rows
of 6 students; 9 rows of 4 students; 12 rows of
3 students; 18 rows of 2 students
7. Afreen, Tori, and Liz each bought a toy fish. Afreen's fish is 10 inches longer than Tori's fish. Liz's fish is 2 inches longer than twice the length of Tori's fish. Tori's fish is 12 inches long. Find the length of each toy fish.

Afreen's: 22 in.; Liz's: 26 in.
8.

MP) Nell made a secret code. Each code word has 2 letters. Each word begins with a consonant and ends with a vowel. How many code words can Nell make with 3 consonants and 2 vowels?

6 code words
9. Allie is building a patio. The patio will have 8 tiles in each of 13 rows. She has already built the center section with 4 tiles in each of 7 rows. How many more tiles are needed to complete the patio? Show your work.
76 more tiles are needed to complete the patio.
$8 \times 13=104,7 \times 4=28,104-28=76$

128 Go Math! Grade 4

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!'

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Activities

Meaningful and fun math practice

(4) Elaborate

On Your Own

If students complete the checked problems correctly, they may continue.

MP) Model with mathematics.

Problem 5 Students may find it helpful to make a diagram of how the students and adults are seated in each row, as well as Mr. Torres seated by himself.
Problem 7 Students need to recognize that they are given the length of Tori's fish. From this, they can use the information they are given about the remaining fish to draw diagrams of how they compare to Tori's fish.
Problem 8 Students are required to make a list in order to solve this multi-step problem.
Problem 9 Students should recognize this is a multi-step problem. Those who have difficulty determining how to approach the problem, may find it helpful to draw a diagram. Students who multiply incorrectly may be forgetting to add regrouped tens.

(5) Evaluate
 Formative Assessment

I Can

Have students Choose a problem from the lesson, choose a method to solve it, and explain to a partner to demonstrate the skill for the I Can statement.
I can solve real-world problems involving multiplication of whole numbers by . . . drawing diagrams to help me organize the information in the problems. Drawing a diagram helps me visualize how the information in the problem is related.

Exit Ticket

Write a word problem that can be solved using multiplication of two-digit numbers. Solve your word problem and explain the solution.

Practice and Homework

Multi-Step Multiplication Problems

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items. Use the Write Math section to determine students' understanding of content for this lesson.

Name
Multi-Step Multiplication Problems

Solve each problem.

1. A community park has 6 tables with a chessboard painted on top. Each board has 8 rows of 8 squares. When a game is set up, 4 rows of 8 squares on each board are covered with chess pieces. If a game is set up on each table, how many total squares are NOT covered by chess pieces?

$4 \times 8=32$
$6 \times 32=\square$
192 squares
2. Jonah and his friends go apple picking. Jonah fills 5 baskets. Each basket holds 15 apples. If 4 of Jonah's friends pick the same amount as Jonah, how many apples do Jonah and his friends pick in all? Draw a diagram to solve the problem.
$5 \times 15=75 \quad 5 \times 75=375$
375 apples
3. Write Math Write a word problem that can be solved using multiplication of two-digit numbers. Solve your word problem and explain the solution.

Check students' work.

\qquad
\qquad
\qquad

Lesson Check

4. At a tree farm, there are 9 rows of 36 spruce trees. In each row, 14 of the spruce trees are blue spruce. How many spruce trees are NOT blue spruce?
5. Kai is tiling a countertop. He needs to place 54 square tiles in each of 8 rows to cover the counter. He wants to randomly place 8 groups of 4 blue tiles each and have the rest of the tiles be white. How many white tiles will Kai need?
\qquad
400 white tiles

Spiral Review

6. Juan reads a book with 368 pages. Savannah reads a book with 172 fewer pages than Juan's book. How many pages are in the book Savannah reads?
7. Hailey has bottles that hold 678 pennies each. About how many pennies does she have if she has 6 bottles filled with pennies?

Possible estimate: about 4,200 pennies
9. Ivan has 5 fish in his fish tank. Jasmine has 4 times as many fish as Ivan has. How many fish does Jasmine have?

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance

Multiply 3-Digit and 4-Digit Numbers with Regrouping

SNAPSHOT

Mathematical Standards

- Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Mathematical Practices and Processes

- Model with mathematics.
- Attend to precision.
- Construct arguments and critique reasoning of others.
- Reason abstractly and quantitatively.

I Can Objective

I can multiply whole numbers using estimation, rounding, and place value.

Learning Goal

Use regrouping to multiply a multi-digit number by a 1-digit number.

Language Objective

Student pairs demonstrate to a small group how you can use regrouping to multiply.

MATERIALS

- MathBoard
- 1-centimeter grid paper

ACROSS THE GRADES

Before	Grade 4	
Multiply a one-digit whole number by a multiple of 10, up to 90 or a multiple of 100, up to 900 , with procedural reliability.	Multiply two whole numbers, up to three digits by up to two digits, with procedural reliability.	Multiply and divide a multi-digit number with decimals to the tenths by one-tenth and one- hundredth with procedural reliability.

ABOUT THE MATH

Teaching for Depth

For most computations, students start with an estimate to establish what a reasonable answer should be. With an estimated answer, the estimate is the answer. Students seldom check an estimated answer.

- Students should utilize other methods for determining if their estimated answer is reasonable. For example, if students have rounded to determine the answer, they might determine a range of estimates to check their estimates.

Problem of the Day 3.10

Write an expression that shows how to multiply 6×435 using place value and expanded form. Possible answer: $(6 \times 400)+(6 \times 30)+(6 \times 5)$

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Write the following problems on the board. Have students complete the problems and check their answers with a partner.
$327+4,618=4,945$
$26,806+7,495=34,301$
$583+6,279=6,862$
Remind students who rewrite addition problems in vertical form to align the numbers by place value. Point out that regrouping may or may not be needed in every place of a problem.

FOCUSING ON THE WHOLE STUDENT

Supporting All Learners

In this lesson, students will learn how to multiply whole numbers using estimation, rounding, and place value. Saudi Arabia produces many gallons of oil per day. The amount of oil can be used in a mathematical problem involving multiplication of whole numbers. Suppose on a particular day Saudi Arabia produces about 11 million barrels of oil. You can find how many gallons are produced by multiplying the number of barrels by the number of gallons per barrel. Ask students to share any knowledge they have on oil.

Access Prior Knowledge

Write these numbers on the board.

1,545 1,623 1,872

Have a volunteer come to the board and round one of the numbers to the nearest thousand and to the nearest hundred, and write the numbers.

- Explain how you rounded the numbers. Answers will vary, but should include place value and rounding strategies.
Continue in the same way with the other numbers.

with the Interactive Student Edition

I Can Objective

I can multiply whole numbers using estimation, rounding, and place value.

Making Connections

Invite students to tell you what they know about different methods for multiplication.

- What does it mean to use repeated addition to multiply 356 by 4 ? Add 4 groups of 356 .
- What does it mean to use expanded form to multiply 356 by 4 ? Write the multi-digit number in expanded form and then perform multiplication. $(4 \times 300)+(4 \times 50)+(4 \times 6)$

Learning Activity

A diner orders 217 loaves of bread each week. In the month of February, there will be exactly 4 weeks of deliveries. How many loaves of bread will the diner order in February? Ask the following questions.

- How many loaves of bread does the diner order each week? 217 loaves
- How many weeks of deliveries will there be? 4 weeks
- What multiplication problem will let you determine the number of loaves ordered in February? 4×217

(2) Explore

Unlock the Problem

- Why do you estimate before you multiply? | estimate so I will know what is a reasonable answer

Reason abstractly and quantitatively.

- Explain how you know if the estimate will be less than or greater than the actual product. Since one factor is rounded to a number greater than the actual number and the other stayed the same, the estimate will be greater than the exact product.
To extend their thinking, ask students about a strategy for finding a range for the exact answer by estimation.
- How can you find an estimate that is a range for the exact answer by estimating? I can round the greater factor up and down to work with a number that I can multiply mentally.
- What is the new estimate? between 1,500 and 1,800

MP) Attend to precision.

- How does the method for multiplying a 3-digit number by a 1-digit number compare to multiplying a 2-digit number by a 1-digit number? Possible answer: In both cases, each digit in the multi-digit number is multiplied by the 1 -digit number starting with the ones digit and moving left, regrouping as needed. To multiply a 3-digit number, there is also a hundreds digit to multiply.

Name

Lesson 10

Multiply 3-Digit and 4-Digit

 Numbers with Regrouping(ICan multiply whole numbers using estimation, rounding, and place value.
8. E UNLOCK the Problem

Alley Spring, in Missouri, produces an average of 567 million gallons of water per week. How many million gallons of water do the springs produce in 3 weeks?
Multiply. $3 \times 567 \quad$ Possible estimate:
Estimate. $3 \times 1600=1,800$

THINK
RECORD
STEP 1
Multiply the ones.
3×7 ones $=21$ ones
Regroup the 21 ones.

STEP 2
Multiply the tens.
3×6 tens $=18$ tens
Add the regrouped tens.
18 tens +2 tens $=20$ tens
Regroup the 20 tens.

STEP 3
Multiply the hundreds.
3×5 hundreds $=15$ \qquad hundreds
Add the regrouped hundreds.
${ }_{567}^{22} \quad 17$ hundreds is the same as 1,701
$\times \quad 1$ thousand 7 hundreds. 15 hundreds +2 hundreds $=17$ hundreds

So, Alley Spring produces 1,701 million gallons of water in 3 weeks.

ML Multilingual Support

STRATEGY: Frontload

Help students by anticipating and reducing difficulties students might have knowing how to respond to questions beginning with how much and how many.

- Write on the board:

How many boys are in our class?
How many girls are there?
How much time do you take to eat your lunch?
How much time do you spend doing math problems each day?

- Pair students. Have students ask each other these questions, pointing out which are exact and which are estimates.

132 Go Math! Grade 4

Example

Example A

- Why couldn't you just multiply 4×800 to estimate the total number of miles
traveled? Possible answer: The miles traveled by each animal is very different.
- Why don't you need to regroup when you multiply $\mathbf{2} \times \mathbf{8 0 0}$? Possible answer: 16 hundreds is the same as 1 thousand 6 hundreds. So, I can just write the 16 in the answer

MP) Construct arguments and critique reasoning of others.

Use Math Talk to check students' understanding of estimates.

Example B

- Why is the 9,600 miles estimate for the number of miles traveled by the caribou and humpback whale in 2 migrations greater than the 9,248 miles actually traveled by the caribou and humpback whale in $\mathbf{2}$ migrations? । rounded 838 down to the nearest hundred but I rounded 3,786 up to the nearest thousand

MP) Attend to precision.

Use Math Talk to check students' understanding of precision

Common Errors

Error Students may write the regrouped number in the wrong location.

Example

$$
\begin{array}{r}
1 \\
1,299 \\
\times \quad 2 \\
\hline 8
\end{array}
$$

Springboard to Learning Emphasize that a regrouped number is written over the place immediately to the left of the place that is being multiplied. Have students draw lines to help them keep the places aligned.

(3) Explain

Share and Show
 Math

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking. Have students describe what is happening in Step 3.
Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

Quick Check MTSS RtI

If a student misses the checked problems

Then Differentiate Instruction with

- Reteach 3.10
- Waggle

MP) Attend to precision.

Use Math Talk to check students understanding of the usefulness of estimating a product.

- How would it be helpful to know the number of digits a product will have?
Possible answer: This could help you see that you may have made a regrouping error. If you made a regrouping error, you may have more digits in the product than there should be.

(4) Elaborate

On Your Own

If students complete the checked problems correctly, they may continue with the remaining problems.

MP) Model with mathematics.
Encourage students to develop different strategies for multiplying

- In Problem 9, how could multiplying 2×440 help you find the product of $\mathbf{4} \times \mathbf{4 4 0}$? Possible answer: $2 \times 440=880 ; 880+880=1,760$

Name

Share and Show Math

ones as 2 tens 4 ones.
Estimate. Then find the product. Possible estimates are given.

$$
\text { 2. Estimate: } 2,400 \quad \text { (\$) 3. Estimate: } 14,000
$$

64. Estimate:
$\$ 40,000$
$\begin{array}{r}603 \\ \times \quad 4 \\ \hline 2412\end{array}$

$$
\begin{array}{r}
1,935 \\
\times \quad 7 \\
\hline 13,545
\end{array}
$$

$\$ 8,326$
$\times \quad 5$
$\$ 41,630$

4 digits; possible explanation: The product will be between 4,000 and 8,000 , so it will have 4 digits.

On Your Own

Estimate. Then find the product. Possible estimates are given.
5. Estimate: $\$ 24,000$
6. Estimate: \$21,000

$$
\begin{array}{r}
\$ 2,900 \\
\times \quad 7 \\
\hline \$ 20,300
\end{array}
$$

Explain how you can use estimation to find how many digits the product $4 \times 1,861$ will have.
7. Estimate: $\$ 24,000$

$$
\begin{array}{r}
\$ 4,123 \\
\times \quad 6 \\
\hline \$ 24,738
\end{array}
$$

8. Mr. Xiang has $\$ 5,400$ to buy supplies for the school computer lab. He buys 8 boxes of printer ink that cost $\$ 149$ each and 3 printers that cost $\$ 1,017$ each. How much money will Mr. Xiang have left after he buys the printer ink and printers?
\$1,157
Practice: Copy and Solve Compare. Write $<,>$, or $=$.
9. $5 \times 352 \fallingdotseq 4 \times 440$
10. $6 \times 8,167<9,834 \times 5$
11. $3,956 \times 4<5 \times 7,692$
12. $740 \times 7<8 \times 658$
13. $4 \times 3,645 \bigcirc 5 \times 2,834$
14. $6,573 \times 2 \geqslant 4,365 \times 3$

Meeting Individual Needs

Problem Solving • Applications

```
Read
Norld
```

15. Airplane tickets to Fairbanks, Alaska, will cost $\$ 958$ each. Airplane tickets to Vancouver Canada, will cost $\$ 734$. How much can the four members of the Harrison family save on airfare by vacationing in Vancouver?

Show the Math
Demonstrate Your Thinking
16. Philadelphia, Pennsylvania, is 2,147 miles from Salt Lake City, Utah, and 2,868 miles from Portland, Oregon. What is the difference in the round-trip distances between Philadelphia and each of the other two cities? Explain whether you need an estimate or an exact answer.

1,442 mi; possible explanation: exact answer
since the question asks for a difference

Vahe says that the product of a 4-digit number and a 1-digit number is always a 4-digit number. Does Vahe's statement make sense? Explain.

No. Possible explanation: When there are
regrouped thousands, the product of a
4-digit number and a 1-digit number can
have 5 digits.
18. What number is 150 more than the product of 5 and 4,892 ? Explain how you found the answer.

24,610; Possible explanation: First find the
product $5 \times 4,892=24,460$. Then add 150
to the product; $24,460+150=24,610$.

134 Go Math! Grade 4

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!'

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Activities

Meaningful and fun math practice

Problem Solving Applications

Have students discuss how to decide when to estimate an answer or find an exact answer.
Problem 16 Students should recognize that the one-way distances between cities are given, but they need to compare the round-trip distances. Therefore, this is a multistep problem involving multiplication and subtraction.
Math on the Spot Use this video to help students model and solve this type of problem.

Higher-Order Thinking

Reason abstractly and quantitatively.

Problem 17 Students are required to use higher order thinking skills to decide if Vahe's conclusion is correct.

Problem 18 Students should recognize that this is a multi-step problem involving multiplication then addition. If students set up the problem correctly but still have the wrong answer, check for computational and regrouping errors.

(5) Evaluate
 Formative Assessment

I Can Objective

Have student pairs demonstrate to a small group the skill for the I Can statement.
I can multiply whole numbers using estimation, rounding, and place value
To estimate when multiplying I can round the number(s) to the greatest place based on the values in each number. For example, suppose I was estimating the value of 4×698. First, I would round 698 to 700 because 698 is closer to 700 than it is to 600 . Then, I would multiply 700 by 4 to get an estimate of the answer.

Exit Ticket
Explain how finding 4×384 can help you find $4 \times 5,384$. Then find both products.

Practice and Homework

Multiply 3-Digit and 4-Digit Numbers with Regrouping

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine students' understanding of content for this lesson.

Name
 Multiply 3-Digit and 4-Digit Numbers with Regrouping

Possible estimates are given.
Estimate. Then find the product.

5. Estimate: 15,000	6. Estimate: $\mathbf{\$ 2 7 , 0 0 0}$		7. Estimate: 16,000		8. Estimate: 6,300		
4,616	\$2,854		7,500			948	
+ 3	\times	9	\times	2		$\times \quad 7$	
13,848						6,636	

Problem Solving

9. Lafayette County has a population of 7,022 people. Columbia County's population is 8 times as great as Lafayette County's population. What is the population of Columbia County?
10. A seafood company sold 9,125 pounds of fish last month. If 6 seafood companies sold the same amount of fish, how much fish did the 6 companies sell last month in all?

56,176 people

11. Write Math Explain how finding 4×384 can help you find $4 \times 5,384$. Then find both products.

Check students' work.

Lesson Check

12. By recycling 1 ton of paper,

6,953 gallons of water are saved.
How many gallons of water are saved by recycling 4 tons of paper?
\qquad

Spiral Review

14. A website has 13,406 people registered.

What is the word form of this number?
thirteen thousand, four hundred six
\qquad
16. In a store there are 3 aisles of 20 bins of fruits and vegetables. In each aisle, 12 of the bins are vegetables. How many bins of fruit are there in all?
13. Esteban counted the number of steps it took him to walk to school. He counted 1,138 steps. How many steps does he take walking to and from school each day?
15. In one year, the Kumar family drove their car 15,680 miles. To the nearest thousand, how many miles did they drive their car that year?
\qquad
17. Lea buys 6 model cars that each cost $\$ 15$. She also buys 4 bottles of paint that each cost $\$ 11$. How much does Lea spend on model cars and paint?

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Lesson at a Glance

Solve Multi-Step Problems Using Equations

SNAPSHOT

Mathematical Standards

- Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Mathematical Practices and Processes

- Model with mathematics.
- Attend to precision.

I Can Objective

I can solve real-world multi-step problems using multiplication, addition, and subtraction.

Learning Goal

Solve real-world multi-step problems using multiplication, addition, and subtraction.

Language Objective

Student pairs describe to another group how to solve real-world multi-step problems using multiplication, addition, and subtraction.

MATERIALS

- MathBoard
- index cards

ACROSS THE GRADES

Before	Grade 4	
Solve one- and two-step real-world problems involving any of four operations with whole numbers.	Solve real-world problems involving multiplication and division of whole numbers including problems in which remainders must be interpreted within the context.	Solve multi-step real-world problems involving any combination of the four operations with whole numbers, including problems in which remainders must be interpreted within the context.

ABOUT THE MATH

Why Teach This

In this lesson, students must solve multi-step word problems. When a word problem has a lot of context it is sometimes hard for students to understand what needs to be done in order to solve it.

As students read the problem, have them make a list of any useful information. Once they have a list of this information, have them draw a diagram. A diagram will help students visualize the problem which will help them solve it.

DAILY ROUTINES

Problem of the Day 3.11

Estimate $1,920 \times 3$ and then find the product. Possible estimate: 6,000; Product: 5,760

Vocabulary

- Interactive Student Edition
- Multilingual Glossary

Fluency Builder

Have students complete the calculations.

1. $170+153323$
2. 150×6900
3. $256 \times 41,024$
4. $556-421135$
5. $555+682$ 1,237
6. $125-4283$

FOCUSING ON THE WHOLE STUDENT

Access Prior Knowledge

Choose one or more of the following activities.

- Have one partner act out the role of installing each type of traffic sign. Have the other student explain a possible method to solve the problem
- Have students write a short story in which more than one math operation is used.
Have students discuss how the math operations played a role in the short story.

(1) Engage

with the Interactive Student Edition

I Can Objective

I can solve real-world multi-step problems using multiplication, addition, and subtraction.

Making Connections

- What are the different math operations? addition, subtraction, multiplication, and division
- In what situations in real life do you use math operations? Possible answer: Use addition to find the number of items you have. Use multiplication to find the number of students in four classes with the same number of students in each class.

Learning Activity

A town is replacing all of its traffic signs. The crew responsible for the work is replacing the signs in two batches, first replacing all of the stop signs then all of the other street signs. The crew spent 8 days replacing the stop signs, installing 23 signs each day. They then spent 10 days replacing other street signs, installing 56 signs each day. If there were 925 signs that had to be replaced, how many more signs will the crew install?

- What problem are you trying to solve? how many more signs the crew has left to install
- How many stop signs were installed each day? 23 stop signs For how many days? 8 days
- How many street signs were installed each day? 56 street signs For how many days? 10 days
- How many signs will be installed in all? 925 signs
- Have students identify math operations they might use to solve this problem.

(2) Explore

Unlock the Problem

Read and discuss the problem. Make sure students understand that the solution to the problem can be found by breaking the question into steps.
In order to find each step, have students underline important information in the problem.
Discuss with students the series of single-step equations they can model and solve in order to answer this multi-step problem.

- The models for Steps 1 and 2 both represent multiplication equations. Why does the model for Step 1 show 3 equal sections while the model for Step 2 shows 2 equal sections? Because in Step 1 there are 3 hard drives, and in Step 2 there are 2 hard drives. The equal sections represent the number of hard drives.
- How does the model represent the equation given in Step 3? Each addend is represented by a box shown in the bar model. There are two addends; therefore, there are two boxes in the bar model. The sum or total, a, is represented by the bracket.
- Notice that the bar model in Step 4 represents subtraction. How could you draw a model to represent $306-39=x$? I could replace 224 in the model with 306,78 with 39 , and y with x.

Name

Solve Multi-Step Problems Using Equations

I Can solve real-world multi-step problems using multiplication, addition, and subtraction.

\# UNLOCK the Problem 부엥

Chris's computer has 3 hard drives with 64 gigabytes of space each, and 2 hard drives with 16 gigabytes of space each. The files on his computer use 78 gigabytes of space. How much hard drive space does his computer have left?

Use multiple single-step equations.

STEP 1 Find how much hard drive space is on 3 hard drives with 64 gigabytes of space each.

STEP 2 Find how much hard drive space is on 2 hard drives with 16 gigabytes of space.

STEP 3 Find the total hard drive space on the computer.

STEP 4 The files use 78 gigabytes of space. Find how much hard drive space the computer has left.

So, Chris has 146 gigabytes of hard drive space left on his computer.

Multilingual Support

STRATEGY: Identify Relationships

- Explain that in story problems, students may read that a given number of items hold or contain some number of smaller items. For example, show students 3 notebooks that contain 100 pages each.
- Remind students that they can represent a situation like this using multiplication. To find the total number of pages in the notebooks, write $3 \times 100=300$ pages.
- Ask students to represent the following situations and find the total number of items:
- the number of pens in 2 packs of 3 pens each
- the number of balls in 4 bags of 15 balls each

Share and Show
 Math Board

1. Carnie and Doug bake cookies to sell at a bake sale. Carnie makes 3 batches of 17 cookies each and Doug makes 3 batches of 20 cookies each. After ten minutes at the bake sale, they sold 32 cookies. How many cookies do Carnie and Doug have left to sell?

\longleftarrow First, multiply 3×17. Let p represent the number of cookies Carnie makes.

$3 \times 20=a ; 60=a$
\longleftarrow Next, multiply 3×20. Let a represent the number of cookies Doug makes.

$51+60=y ; 111=y$
\longleftarrow Then, add the two products.
Let y represent the number of cookies Carnie and Doug make.
$111-32=n ; 79=n$
\longleftarrow Finally, subtract to find the number of cookies Carnie and Doug have left to sell.
© 2. Dyani buys 3 bags of lollipops, with 12 lollipops in each bag. She also buys 4 bags of gum, with 11 pieces in each bag. How many lollipops and pieces of gum does Dyani have?

80 lollipops and pieces of gum
© 3. Simba has 4 boxes with 32 marbles in each box. He has 7 boxes with 18 shells in each box. If he gets 20 marbles from a friend, how many marbles and shells does he have?

274 marbles and shells

On Your Own

4. Mario drove 60 miles each day to and from work for 5 days. Then he drove 54 miles each day on Saturday and Sunday. How many miles did Mario drive during those seven days?
5. Keqing has 3 binders with 25 stamps in each binder. She has 5 binders with 24 baseball cards in each binder. If she gives 35 stamps to a friend, how many stamps and cards does she have left?

Possible explanation: I added to find the total number of cookies both Doug and Carnie baked. Multiplying would have meant that there were 51 groups of 60 cookies, instead of a total of 111 cookies.

138 Go Math! Grade 4

Ready for More
 Logical / Mathematical Partners

Materials: index cards

- Have students work in pairs. Give each pair of students 8 index cards.
- Have students write whole numbers ranging from 10 to 40 on 4 of the cards and dollar amounts ranging from $\$ 2$ to $\$ 9$ on the other 4. The whole-number cards represent the number of hours a student worked, and the dollaramount cards represent the hourly wage.
- Have each student draw 2 of each type of card. Students can match pairs of cards to "earn" the most money. Students determine how much money they earned by solving a multi-step equation.
- Have students repeat the activity twice, and encourage them to try to "earn" the greatest amount of money possible.

(3) Explain

Share and Show

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.
Use the checked problems for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

Quick Check MTSS (RI)

If a student misses the checked problems

Then
Differentiate Instruction with

- Reteach 3.11
- Waggle

MP) Attend to precision.

Use Math Talk to check students' understanding of operations to use during different steps of a problem.

(4) Elaborate

On Your Own
If students complete the checked problems correctly, they may continue with the remaining problems.

Higher-Order Thinking

After students read Problem 6 and review Dominic's work, students should identify that Dominic wrote the equations incorrectly. He wrote addition equations instead of multiplication equations. He did draw the bar models correctly.
Math on the Spot Use this video to help students model and solve this type of problem.

Common Errors

Error Students may not use the correct operation when writing an equation.
Example Dominic added $5+12$ instead of multiplying 5×12.
Springboard to Learning Remind students to determine what information they are needing to solve for when writing equations. If they are trying to find the number of items in a certain number of equal groups, multiplication should be used, not addition.
6. Dominic has 5 books with 12 postcards in each book. He has 4 boxes with 20 coins in each box. If he gives 15 postcards to a friend, how many

MATH
on the
- Spot

Dominic drew this model.

Dominic used these steps to solve.

$5+12=p$
$4+20=c$
$17+24=y$
$41-15=n$
$26=n$
Look at the steps Dominic used to solve this problem. Find and describe his error

Use the correct steps to solve the problem.

$5 \times 12=p$ $4 \times 20=c$ $60+80=y$ $140-15=n$ $125=n$ So, there are 125 postcards and coins left.

Chapter 3•Lesson 11139

Meeting Individual Needs

Problem Solving • Applications

Fill in the bubble completely to show your answer.

7. Eric is getting his mountain climbing certificate. There are 63 days that Eric climbs for 2 hours, there are 97 days that he climbs for 1 hour, and there are 22 days that he climbs for 3 hours. How many more hours does Eric need to climb until he earns a certificate for climbing 500 hours?
211 hours
(C) 318 hours
(B) 289 hours
(D) 321 hours
8. Hanh has 315 photos that she wants to put into albums. She buys 4 albums that hold 24 photos each. There are 3 albums that hold 72 photos each. Hanh plans to put any leftover photos into frames. How many frames will Hanh need to buy?
(A) 0
(C) 5

- 3
(D) 13

9. The soccer team sells 54 bagels with cream cheese for $\$ 2$ each and 36 muffins for $\$ 1$ each during a bake sale. The coach uses the bake sale money to buy socks for the 14 players at $\$ 6$ a pair. How much money does the coach have left to buy soccer balls?
(A) $\$ 0$

- $\$ 60$
(B) $\$ 27$
(D) $\$ 138$

10. Trina has 2 bags with 14 pinecones in each bag. She has 7 boxes with 15 acorns in each box. If she trades 5 pinecones for 10 acorns, how many pinecones and acorns does she have?
(A) 28
(B) 105
(C) 133

- 138

Problem Solving Applications

Model with mathematics.

Problems 7-9 Students are required to break down the word problems. Using the information in the problems, students must represent them using equations. Once equations are formed the student must solve them in order to solve the problem.

(5) Evaluate
 Formative Assessment

I Can

Have student pairs describe to another group the process to demonstrate the skill for the I Can statement.
I can solve real-world multi-step problems using multiplication, addition, and subtraction by . . . making models from the information given. Then I can use the models to write and solve the equations needed to solve the problem.

Exit Ticket

Write a word problem that requires you to use multiple steps to solve it.

DIFFERENTIATED INSTRUCTION • Independent Activities

Grab Go!'

Version 2.0
Differentiated Centers Kit

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Games

Reinforce math content and vocabulary

Readers

Supports key math skills and concepts in real-world situations.

Activities

Meaningful and fun math practice

Practice and Homework

Solve Multi-Step Problems Using Equations

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Equations

Problem Solving

1. Rebecca bought a flat of 144 pansies. She planted 3 rows of 16 pansies each. She planted 4 rows of 14 pansies each. How many pansies does she have left to plant?
2. Kiara packed 18 DVDs in each of 4 boxes. She packed 15 DVDs in each of 5 boxes. She has 8 DVDs left over. How many DVDs does Kiara have?
3. Quaddus has 4 shelves with 22 dinosaur models on each shelf. He has 3 shelves with 20 dragon models on each shelf. How many more dinosaur models than dragon models does Quaddus have?

4. Monty buys 2 adult dinner tickets for \$22 each, 2 senior tickets for $\$ 18$ each and 3 child tickets for $\$ 12$ each. How much change will he get from $\$ 120$?
\qquad
5. Alexis needs 280 screws to finish her deck She bought 3 boxes of screws with 40 screws in a box. She had 168 screws. How many screws will she have left over when she finishes the deck?

Lesson Check

Fill in the bubble completely to show your answer.

6. Erika baked 7 trays of 12 muffins each. Simon baked 5 trays of 18 muffins each. They agreed to make 200 muffins for the school bake sale. How many more muffins do they need to make?

26
(B) 36
C) 38
D) 52
8. Ghandi bagged his potatoes in

18 ten-pound bags, 16 five-pound bags, and 4 twenty-five pound bags. He has 2 pounds of potatoes left over. How many pounds of potatoes does Ghandi have?
(A) 262 pounds
(B) 352 pounds
(C) 358 pounds

362 pounds

Spiral Review
10. Jarita bought 352 ounces of juice. She used 320 ounces of juice to make punch. How many ounces of juice does Jarita have left?
(A) 22 ounces

- 32 ounces
(C) 42 ounces
(D) 52 ounces

7. Victoria is buying stickers. She bought 3 packages of stars with 24 in each package. She bought 2 packages of rainbows with 16 in each package. She bought 4 packages of hearts with 10 in each package. She used 82 of the stickers to make cards. How many stickers does Victoria have left?

62
(B) 72
(C) 96
(D) 114
9. Mateo bought 6 hats for $\$ 14$ each and 3 belts for $\$ 33$ each. How much change did he get from $\$ 200$?
(A) $\$ 7$

- $\$ 17$
(C) $\$ 27$
(D) $\$ 58$

11. Jules counted 30 big balloons. There were 6 times as many small balloons as big balloons. How many small balloons were there?
(A) 18
(B) 108

- 180
(D) 1,800

Continue to practice concepts and skills with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention.

Chapter Review

Summative Assessment

Use the Chapter Review to assess students' progress in Chapter 3.

4. For Problems $4 \mathrm{a}-\mathrm{4d}$, select True or False for each equation. 4a. $7 \times 9=7+7+7+7+7+7+7 \quad$ True \quad False $\begin{array}{ll}\text { 4b. } 2+2+2+2+2+2+2=7 \times 2 & \text { - True } \\ \text { 4c. } 6 \times 3=3+3+3+3+3 & \text { ○ True False } \\ \text { - False }\end{array}$ 4 d. $4+4+4+4+4=5 \times 4 \quad$ - True \quad False
5. Part A

Draw a line to match each section in the model to the partial product
Draw a line to
represents.

Part B
Find 3×146. Show your work and explain. 146
$\times \quad 3$
$\times 300$
120
+18

Possible explanation: The model shows that I can write 146 as $100+40+6$. Then I multiply each number by 3 to get the partial products 300,120 , and 18 . The sum of the partial products, 438 , is the answer.

Online, Data-Driven Decision Making

Based on the results of the Chapter Review, use the following resources to review skills.

Item	Lesson		Content Focus
$1,2,3$	3.9	Use the draw a diagram strategy to solve multi-step problems.	Reteach 3.9, Waggle
4,17	3.2	Solve problems involving multiplicative comparison and additive comparison.	Reteach 3.2, Waggle
6	3.1	Relate multiplication equations and comparison statements.	Reteach 3.1, Waggle
5 , 9, 12	3.6	Use expanded form to multiply a multi-digit number by a 1-digit number.	Reteach 3.6, Waggle
$5 B, 13$	3.7	Use place value and partial products to multiply a multi-digit number by a 1-digit number.	Reteach 3.7, Waggle
11	3.3	Multiply tens, hundreds, and thousands by whole numbers through 10.	Reteach 3.3, Waggle
10,13	3.8	Use mental math and properties to multiply a multi-digit number by a 1-digit number.	Reteach 3.8, Waggle
7,8	3.10	Use regrouping to multiply a multi-digit number by a 1-digit number.	Reteach 3.10, Waggle
15	3.4	Estimate products by rounding and determine if exact answers to multiplication problems are reasonable.	Reteach 3.4, Waggle
14,16	3.11	Solve real-world multi-step problems using multiplication, addition, and subtraction.	Reteach 3.11, Waggle
18	3.5	Use the Distributive Property to multiply a 2-digit number by a 1-digit number.	Reteach 3.5, Waggle

6. $-\times 3=2$


```
9 times as many as }3\mathrm{ is 27,
```

Multiply 7×435. For Problems 7 a - 7 d, select True or False for
each statemen
7a. A reasonable estimate of the
7a. A reasonable estim
product is 2,800 .
Using partial produ
Using partial products,
\bigcirc False
\bigcirc True False
7c. Using regrouping, 35 ones $\quad \bigcirc$ True $\begin{aligned} & \text { are regrouped as } 5 \text { tens and }\end{aligned}$
are regrouped as 5 tens and
d. The product is 3,045
- True \bigcirc Fals
8. It costs 328 points t o build each aparment building in the
mpure filiang. What is the
5 apartment buildings? Show your work.

| 1,640 points | $\begin{array}{r}328 \\ \\ \\ \hline 1,640\end{array}$ |
| :--- | :--- | Check students' work.

9. Multiply 7×462 using place value and expanded form.

10. For Prob
number
number.
10a. $31 \times 30=930$, so $31 \times 32=992$
10b. $7 \times 80=560$, so $14 \times 40=560$
10c. $82 \times 25=2,050$, so $82 \times 50=\underline{4,100}$
10d. $15 \times 15=225$, so $30 \times 15=450$
11. Liam has 3 boxes of baseball cards with 50 cards in each box. He also has 5 boxes with 40 basketball cards in each box. If Liam goe 10 the store and buys 50 more baseball cards, how many
and basketball cards does Liam have? Show your work.
$3 \times 50=150$
$5 \times 40=200$
$150+200=350$
$350+50=400$
Liam has 400 bas
Check students' work.

Performance
Assessment Task
See the Performance Tasks to assess students' understanding of the content.

For each task, you will find sample student work for each of the response levels in the task scoring rubric.

Name
12. There is a book sale at the library. The price for each book is $\$ 4$. library will make ifit sells 289 books? Use the numbers on the tiles to complete your answer.
$(4 \times \xrightarrow{200})+(4 \times \xrightarrow{80})+(4 \times \xrightarrow{9})$

13. Find $8 \times$ 397. Show your work and explain why the strategy you chose works best with the factors.

3,176; Possible explanation: Since 397 is 3 less than 400 , 1 used subtraction.
$8 \times(400-3)=(8 \times 400)-(8 \times 3)=3,200-24=3,176$
14. A clown bought 6 bags of round balloons with 24 balloons in each bag. The clown also bought 3 bags of long balloons with 36 balloons in each bag.

Part A
ow many more round bal
lown buy? Show your work.
36 balloons; $6 \times 24=144 ; 3 \times 36=108 ; 144-108=36$
Check students' work.
Part B
The clown also bought 5 bags of heart-shaped balloons with 14 balloons in each bag. When the clown blew up all of the und, long, and heart-shaped balloons, 23 balloons burst.

299 blown-up balloons; Possible explanation: First, I found the number of heart-shaped balloons, $5 \times 14=70$. Next, ladded that number to the number of round balloo in all. Last, I subtracted the number of burst balloo so $322-23=299$ balloons left.
15. Hector planted 185 flowers in 2 days. There were 5 volunteers,
including Hector, who each planted about the esmen enmber of flowers. About how many flowers did they plant?
16. Jay and Blair went fishing. Together, they caught 36 fish. Jay caught 2 times as many fish as Blair. How many fish did Jay and Blair each catch? Write an equation and solve. Explain your work.
Possible explanation: Blair caught n fish, and Jay caught $2 \times n$ fish. Together they caught $3 \times n$ fish, sol wrote the $=24$ fish. Blair caught 12 fish, and Jay caught 24 fish.
17. At the per fair, Danica's dog weighed 5 times as much as Louie's dog. Together, the dogs weighed 84 pounds. How much did each dog weigh? Complete the bar model. Write an equation and solve.

Louie n
$6 \times n=8$
$n=14$

Louie's dog weighed 14 pounds. Danica's dog weighed 70 pounds.

Use the Distribuiva tho model the product on the grid Record the product
$4 \times 12=\underline{48}$

Go Math! Grade 4

Chapter Test

Summative Assessment

Use the Chapter Test to assess students' progress in Chapter 3.
Chapter Tests are found in the Assessment Guide. Test items are presented in formats consistent with high-stakes assessments.

Teacher Notes

[^0]: *For individual and class practice with counting automaticity and operational fluency, go to Achieving Facts Fluency pages located online.

[^1]: * For more information on WIDA Standards, visit their website at:
 https://wida.wisc.edu/.

