LESSON

Relish Ratios

In this lesson, students solve a multi-step problem by converting measurement units and scaling down quantities.

CONNECTIONS TO THE CORE

LANGUAGE SUPPORT

- Convert between different standard measurement units. 5.MD.A. 1
- Interpret multiplication as scaling (resizing). 5.N..B. 5
- Fluently add, subtract, multiply, and divide multi-digit decimals. 6.NS.B. 3
- Use ratio reasoning to convert measurement units. 6.RP.A.3d

MATH TERMS
proportion equation that shows two equivalent ratios
scale factor number that scales or multiplies a quantity
ACADEMIC LANGUAGE
paillard thinly sliced or pounded piece of meat
relish
chopped fruit or vegetable pieces in a sauce

SET UP

Introduce Chapter 3 from Math Meets Culinary Arts.

Ask questions to review Lesson 1 and connect to Lesson 2.
For example: How did we use math in the last problem to create a recipe? (We created a recipe using the baker's percentage ratio to identify the precise quantities.)

Ask students to list possible steps from creating a recipe to preparing it for a group. Explain that sometimes recipes need to be scaled up or down depending on their serving size.

Review the definitions of proportion and scale factor.
Today, we'll convert from grams to ounces and scale down the ingredients in a recipe.

PLAN

Create a plan to solve the problem.

Lyanna's relish recipe calls for 280 g strawberries, 140 g pomegranate seeds, and 32 g red onions. It makes 8 servings. In ounces, what quantity of each ingredient does Lyanna need to make only 2 servings of the relish?

Read the problem aloud to students.
Guide students to think logically and analyze the different steps in the problem.
For example: How should Lyanna scale down her recipe? (The recipe serves 8 , and she only needs to make 2 servings.)
Point out that chefs often need to convert between different measurement units.
Which measurement unit do we use for the final quantities? (ounces) How many grams are in 1 ounce? ($1 \mathrm{oz} \approx 28.35 \mathrm{~g}$)
Guide students to see that they can estimate and use proportional reasoning to check if their answers are reasonable.

Register at hmhco.com/mathatwork

STANDARDS FOR
MATHEMATICAL
PRACTICE

Construct Viable Arguments
Students construct arguments to support their reasoning and summarize the reasoning of others.

Attend to Precision
Students specify units of measure and evaluate their answers to determine the precision of their estimates.

SOLVE

Have student pairs solve the problem as you circulate.

Encourage students to come up with multiple strategies and represent the problem
situation in different ways. Guide students to work backwards to check their work.

SUPPORT

Ask questions based on common errors to support student understanding.

- About how many grams is 2 oz ? 3 oz ? How can you estimate to check if your answer is reasonable?
- What is the scale factor?
- Is it more efficient to divide the quantities by 4 or multiply by the scale factor $\frac{1}{4}$?

EXTEND

Ask questions to encourage students to extend their thinking.

- Does it matter which step of the problem you solve first? Why or why not?
- What espression can you write to simplify scaling down and converting into one step?
- Why do you think proportional reasoning is important in this problem?

SHARE

Have students present their solutions.

Ask students from each pair to explain their solutions to the class. Show at least two different approaches to solving the problem and one incorrect solution. To extend classroom discussion, call on students to explain the reasoning of the student who is presenting.

Possible student work:

8 servings $\div 4=2$ servings

Ingredients	Original Quantity (8 servings)	$\div 4$	New Quantity (2servings)	conversion $\times \frac{1020}{28.359}$
Strawberries	280 g	$\div 4$	70 g	2.502
Pomegranate seeds	140 g	$\div 4$	35 g	1.202
Red Onions	32 g	$\div 4$	8 g	0.302

Play the Chapter 3 Solution from Math Meets Culinary Arts.
Have students complete the Practice and Reflect sections on Student Page 2.

HOMEWORK

 IDEASHave students scale their own recipe!
Students scale a recipe up or down for a specific serving size.

- What is the scale factor?
- How can you check that your quantities are correct?
- What if someone asked you to serve the meal to 100 people instead?
\qquad

MATH TERMS

proportion equation that shows two equivalent ratios
scale factor number that scales or multiplies a quantity

Lyanna's relish recipe calls for 280 g strawberries, 140 g pomegranate seeds, and 32 g red onions. It makes 8 servings. In ounces, what quantity of each ingredient does Lyanna need to make only 2 servings of the relish?

PLAN
 Create a plan to solve the problem with your partner.

SOLVE Use your plan to solve the problem.
\qquad

PRACTICE Apply your skills to solve another problem.
Lyanna needs to make her recipe for a group of 15 people. How many ounces of strawberries, pomegranate seeds, and red onions will she need?

REFLECT Explain how you made sense of the math.
How are scaling and converting quantities similar?

Scaling and converting quantities are similar because
How could you use mental math to solve these problems?
I could use mental math by \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MATH TERMS

proportion equation that shows two equivalent ratios
scale factor number that scales or multiplies a quantity

Lyanna's relish recipe calls for 280 g strawberries, 140 g pomegranate seeds, and 32 g red onions. It makes 8 servings. In ounces, what quantity of each ingredient does Lyanna need to make only 2 servings of the relish?

PLAN
 Create a plan to solve the problem with your partner.

SOLVE Use your plan to solve the problem.
\qquad

PRACTICE Apply your skills to solve another problem.
Lyanna needs to make her recipe for a group of 15 people. How many ounces of strawberries, pomegranate seeds, and red onions will she need?

REFLECT Explain how you made sense of the math.
How are scaling and converting quantities similar?

Scaling and converting quantities are similar because
How could you use mental math to solve these problems?
I could use mental math by \qquad
\qquad
\qquad
\qquad
\qquad

