Teacher Edition:

 Planning and Pacing GuideGrade 3

Pacing Guide

Build Understanding
Connect Concepts and Skills
Apply and Practice
INsuccess Lessons

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Unit 1 UNDERSTAND MULTIPLICATION AND AREA		
Module 1: Understand Multiplication		
Lesson 1.1 Count Equal Groups	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.AT. 4 Interpret a multiplication equation as equal groups (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each). Represent verbal statements of equal groups as multiplication equations.	1 day
Lesson 1.2 Relate Addition and Multiplication	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.AT. 4 Interpret a multiplication equation as equal groups (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each). Represent verbal statements of equal groups as multiplication equations.	1 day
Lesson 1.3 Represent Multiplication with Arrays	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 1.4 Understand the Commutative Property of Multiplication	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication.	1 day
Lesson 1.5 Represent Multiplication with Number Lines	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 1.6 Represent Multiplication with Bar Models	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days

In addition to the core instructional pacing below, HMH recommends the following:

- 3 days per year for the Growth Measure assessments
- 2 days per module for the Module Opener, Are You Ready?, Module Review, and Module Test
- 1 day per unit for the Performance Task

Using these recommendations, the total pacing for Grade 3 is 181 days.

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 2: Relate Multiplication and Area		
Lesson 2.1 Understand Area by Counting Unit Squares	3.M. 5 Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	1 day
Lesson 2.2 Measure Area by Counting Unit Squares	3.M. 5 Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	1 day
Lesson 2.3 Relate Area to Addition and Multiplication	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.M. 5 Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	1 day
Lesson 2.4 Solve Problems with Area	3.M. 6 Multiply side lengths to find areas of rectangles with whole-number side lengths to solve real-world problems and other mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	1 day
Lesson 2.5 Find the Area of Combined Rectangles	3.M. 6 Multiply side lengths to find areas of rectangles with whole-number side lengths to solve real-world problems and other mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Unit 2 MULTIPLICATION AND DIVISION		
Module 3: Understand Multiplication Strategies		
Lesson 3.1 Multiply with 2 and 4	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days
Lesson 3.2 Multiply with 5 and 10	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days
Lesson 3.3 Multiply with 3 and 6	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 4: Apply Multiplication Properties as Strategies		
Lesson 4.1 Understand the Identity and Zero Properties of Multiplication	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication.	1 day
Lesson 4.2 Understand the Distributive Property	3.C. 1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction. 3.C. 5 Multiply and divide within 100 using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$), or properties of operations.	1 day
Lesson 4.3 Understand the Associative Property of Multiplication	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication.	1 day
Lesson 4.4 Multiply with 7	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 .	1 day
Lesson 4.5 Multiply with 8	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 .	1 day
Lesson 4.6 Multiply with 9	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 .	1 day
Lesson 4.7 Identify Number Patterns on the Multiplication Table	3.AT. 6 Create, extend, and give an appropriate rule for number patterns within 100 (including patterns in the addition table or multiplication table).	2 days

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 5: Read, Write, and Show Numbers to 1,000		
Lesson 5.1 Use the Distributive Property	3.C.5 Multiply and divide within 100 using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$), or properties of operations. 3.M.5 Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	2 days
Lesson 5.2 Use the Associative Property of Multiplication	3.C.5 Multiply and divide within 100 using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=$ 40, one knows $40 \div 5=8$), or properties of operations.	1 day
Lesson 5.3 Use Place-Value Strategies to Multiply with Multiples of 10	3.C.2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.C.5 Multiply and divide within 100 using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=$ 40, one knows $40 \div 5=8$), or properties of operations.	1 day
Lesson 5.4 Multiply Multiples of 10 by 1-Digit	3.C.5 Multiply and divide within 100 using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=$ 40, one knows $40 \div 5=8)$, or properties of operations. Numbers	3.AT.2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 6: Understand Division		
Lesson 6.1 Represent Division	3.C. 3 Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division. 3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 6.2 Separate Objects into Equal Groups	3.C. 3 Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division. 3.C. 4 Interpret whole-number quotients of whole numbers (e.g., interpret $56 \div$ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each).	1 day
Lesson 6.3 Find the Number of Equal Groups	3.C. 3 Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division. 3.C. 4 Interpret whole-number quotients of whole numbers (e.g., interpret $56 \div$ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each).	1 day
Lesson 6.4 Relate Subtraction and Division	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 6.5 Represent Division with Arrays	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 6.6 Represent Division with Bar Models	3.C. 4 Interpret whole-number quotients of whole numbers (e.g., interpret $56 \div$ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each).	1 day
Lesson 6.7 Apply Division Rules for 1 and 0	3.C. 3 Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 7: Relate Multiplication and Division		
Lesson 7.1 Relate Multiplication and Division	3.C. 3 Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division.	1 day
Lesson 7.2 Write Related Facts	3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 .	1 day
Lesson 7.3 Multiply and Divide with 2,4 , and 8	3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 . 3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days
Lesson 7.4 Multiply and Divide with 5 and 10	3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 . 3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days
Lesson 7.5 Multiply and Divide with 3 and 6	3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 . 3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days
Lesson 7.6 Multiply and Divide with 7 and 9	3.C. 5 Multiply and divide within 100 using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=$ 40 , one knows $40 \div 5=8$), or properties of operations. 3.AT. 5 Determine the unknown whole number in a multiplication or division equation relating three whole numbers.	2 days
Lesson 7.7 Build Fluency with Multiplication and Division	3.C. 6 Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 .	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 8: Apply Multiplication and Division		
Lesson 8.1 Identify and Extend Problems	3.AT. 6 Create, extend, and give an appropriate rule for number patterns within 100 (including patterns in the addition table or multiplication table).	1 day
INsuccess Lesson Find a Rule Use after Lesson 8.1	3.AT. 6 Create, extend, and give an appropriate rule for number patterns within 100 (including patterns in the addition table or multiplication table).	1 day
Lesson 8.2 Find Unknown Factors and Numbers	3.AT. 5 Determine the unknown whole number in a multiplication or division equation relating three whole numbers.	2 days
Lesson 8.3 Use Multiplication and Division to Solve Problem Situations	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.AT. 5 Determine the unknown whole number in a multiplication or division equation relating three whole numbers.	1 day
INsuccess Lesson Model Two-Step Problems Use before Lesson 8.4	3.AT. 3 Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 8.4 Solve Two-Step Problems	3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication. 3.AT. 3 Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days
Lesson 8.5 Practice with Oneand Two-Step Problems	3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbo for the unknown number to represent the problem). 3.AT. 3 Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Unit 3 ADDITION AND SUBTRACTION STRATEGIES AND APPLICATIONS		
Module 9: Addition and Subtraction Strategies		
Lesson 9.1 Identify Number Patterns on the Addition Table	3.AT. 6 Create, extend, and give an appropriate rule for number patterns within 100 (including patterns in the addition table or multiplication table).	1 day
Lesson 9.2 Use Mental Math Strategies for Addition and Subtraction	3.C. 1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.	1 day
Lesson 9.3 Use Properties to Add	3.C. 1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.	1 day
Lesson 9.4 Use Mental Math to Assess Reasonableness	3.AT. 3 Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 9.5 Round to the Nearest Ten or Hundred	3.NS. 9 Use place value understanding to round 2- and 3-digit whole numbers to the nearest 10 or 100.	1 day
Lesson 9.6 Use Estimation with Sums and Differences	3.NS. 9 Use place value understanding to round 2- and 3-digit whole numbers to the nearest 10 or 100.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 10: Addition and Subtraction Within 1,000		
INsuccess Lesson Numbers Through Hundreds Use before Lesson 10.1	3.NS. 1 Read and write whole numbers up to 10,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000 .	1 day
INsuccess Lesson Numbers Through Ten Thousand Use before Lesson 10.1	3.NS. 1 Read and write whole numbers up to 10,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000 .	1 day
INsuccess Lesson Read and Write Numbers Through Ten Thousand Use before Lesson 10.1	3.NS. 1 Read and write whole numbers up to 10,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000 .	1 day
INsuccess Lesson Compare Numbers through Ten Thousand Use before Lesson 10.1	3.NS. 2 Compare two whole numbers up to 10,000 using >, =, and < symbols.	1 day
Lesson 10.1 Use Expanded Form to Add	3.NS. 1 Read and write whole numbers up to 10,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000 . 3.C. 1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.	1 day
Lesson 10.2 Use Place Value to Add	3.C. 1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.	2 days
Lesson 10.3 Combine Place Values to Subtract	3.C. 1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.	1 day
Lesson 10.4 Use Place Value to Subtract	3.C. 1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.	2 days
Lesson 10.5 Choose a Strategy to Add or Subtract		1 day
Lesson 10.6 Model and Solve Two-Step Problems	3.AT. 3 Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	2 days

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 11: Understand Perimeter		
Lesson 11.1 Describe Perimeter	3.M. 7 Find perimeters of polygons given the side lengths or given an unknown side length.	1 day
Lesson 11.2 Find Perimeter	3.M.7 Find perimeters of polygons given the side lengths or given an unknown side length.	1 day
Lesson 11.3 Find Unknown Side Lengths	3.M. 7 Find perimeters of polygons given the side lengths or given an unknown side length.	1 day
Lesson 11.4 Represent Rectangles with the Same Area and Different Perimeters	3.M.5 Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	1 day
Lesson 11.5 Represent Rectangles with the Same Perimeter and Different Areas	3.M. 5 Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 12: Time Measurement and Intervals		
Lesson 12.1 Tell and Write Time to the Minute	3.M.3 Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve real-world problems involving addition and subtraction of time intervals in minutes.	1 day
Lesson 12.2 Use a.m. and p.m. to Describe Time	3.M.3 Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve real-world problems involving addition and subtraction of time intervals in minutes.	1 day
Lesson 12.3 Measure Time Intervals	3.M.3 Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve real-world problems involving addition and subtraction of time intervals in minutes.	1 day
Lesson 12.4 Find Start and End Times	3.M.3 Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve real- world problems involving addition and subtraction of time intervals in minutes.	1 day
Lesson 12.5 Solve Time Interval Problems	3.M.3 Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve real- world problems involving addition and subtraction of time intervals in minutes.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Unit 4 FRACTIONS		
Module 13: Understand Fractions as Numbers		
Lesson 13.1 Describe Equal Parts of a Whole	3.NS. 3 Understand a fraction, $1 / \mathrm{b}$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a parts of size $1 / \mathrm{b}$.	1 day
Lesson 13.2 Represent and Name Unit Fractions	3.NS. 3 Understand a fraction, $1 / \mathrm{b}$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a parts of size $1 / b$.	1 day
Lesson 13.3 Represent and Name Fractions of a Whole	3.NS. 3 Understand a fraction, $1 / \mathrm{b}$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a parts of size $1 / b$.	1 day
Lesson 13.4 Represent and Name Fractions on a Number Line	3.NS. 4 Represent a fraction, $1 / \mathrm{b}$, on a number line by defining the interval from 0 to 1 as the whole, and partitioning it into b equal parts. Recognize that each part has size $1 / \mathrm{b}$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. 3.NS. 5 Represent a fraction, a / b, on a number line by marking off lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b, and that its endpoint locates the number a / b on the number line.	1 day
Lesson 13.5 Express Whole Numbers as Fractions	3.NS. 7 Recognize and generate simple equivalent fractions (e.g., $1 / 2=2 / 4$, $4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model).	1 day
Lesson 13.6 Represent and Name Fractions Greater Than 1	3.NS. 3 Understand a fraction, $1 / \mathrm{b}$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a parts of size $1 / \mathrm{b}$. 3.NS. 5 Represent a fraction, a / b, on a number line by marking off lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b, and that its endpoint locates the number a / b on the number line.	1 day
Lesson 13.7 Use Fractions to Measure Lengths	3.DA. 2 Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 14: Relate Shapes, Fractions, and Area		1 day
Lesson 14.1 Relate Fractions and Area	3.G.4 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole (1/2, 1/3, 1/4, 1/6, 1/8).	3.G.4 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole (1/2, 1/3, 1/4, 1/6, 1/8).
Lesson 14.2 into Equal Areas	1 day Lesson 14.3 Use Unit Fractions to Describe Area each part as a unit fraction of the whole (1/2,1/3,1/4,1/6,1/8).	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 15: Compare Fractions		
Lesson 15.1 Compare Fractions Using Concrete and Visual Models	3.NS. 7 Recognize and generate simple equivalent fractions (e.g., $1 / 2=2 / 4$, $4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model). 3.NS. 8 Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions (e.g., by using a visual fraction model).	1 day
Lesson 15.2 Compare Fractions with the Same Denominator	3.NS. 8 Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions (e.g., by using a visual fraction model).	1 day
Lesson 15.3 Compare Fractions with the Same Numerator	3.NS. 8 Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions (e.g., by using a visual fraction model).	1 day
Lesson 15.4 Use Reasoning Strategies to Compare Fractions	3.NS. 8 Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions (e.g., by using a visual fraction model).	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 16: Understand Equivalent Fractions		
Lesson 16.1 Use Drawings to Represent Equivalent Fractions with Smaller Parts	3.NS. 6 Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line. 3.NS. 7 Recognize and generate simple equivalent fractions (e.g., $1 / 2=2 / 4$, $4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model).	1 day
Lesson 16.2 Represent Equivalent Fractions with Larger Parts	3.NS. 6 Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line. 3.NS. 7 Recognize and generate simple equivalent fractions (e.g., $1 / 2=2 / 4$, $4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model).	1 day
Lesson 16.3 Recognize and Generate Equivalent Fractions	3.NS. 6 Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Unit 5 MEASUREMENT AND DATA		
Module 17: Liquid Volume and Mass		
Lesson 17.1 Estimate and Measure Liquid Volume	3.M. 1 Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (I). Add, subtract, multiply, or divide to solve one-step real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	1 day
Lesson 17.2 Estimate and Measure Mass	3.M. 1 Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (I). Add, subtract, multiply, or divide to solve one-step real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	1 day
Lesson 17.3 Solve Problems About Liquid Volume and Mass	3.M. 1 Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (I). Add, subtract, multiply, or divide to solve one-step real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	2 days
INsuccess Lesson Count Coins and Bills Use after Lesson 17.3	3.M. 4 Find the value of any collection of coins and bills. Write amounts less than a dollar using the ϕ symbol and write larger amounts using the $\$$ symbol in the form of dollars and cents (e.g., \$4.59). Solve real-world problems to determine whether there is enough money to make a purchase.	1 day
INsuccess Lesson Compare Amounts of Money Use after Lesson 17.3	3.M. 4 Find the value of any collection of coins and bills. Write amounts less than a dollar using the ϕ symbol and write larger amounts using the $\$$ symbol in the form of dollars and cents (e.g., \$4.59). Solve real-world problems to determine whether there is enough money to make a purchase.	1 day
INsuccess Lesson Estimate and Measure Customary Units of Liquid Volume Use after Lesson 17.3	3.M. 1 Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (I). Add, subtract, multiply, or divide to solve one-step real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	1 day
INsuccess Lesson Estimate and Measure Weight Use after Lesson 17.3	3.M.2 Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (I). Add, subtract, multiply, or divide to solve one-step real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	1 day
INsuccess Lesson Temperature Use after Lesson 17.3	3.M. 2 Choose and use appropriate units and tools to estimate and measure length, weight, and temperature. Estimate and measure length to a quarterinch, weight in pounds, and temperature in degrees Celsius and Fahrenheit.	1 day
INsuccess Lesson Choose the Appropriate Unit and Tool Use after Lesson 17.3	3.M. 2 Choose and use appropriate units and tools to estimate and measure length, weight, and temperature. Estimate and measure length to a quarterinch, weight in pounds, and temperature in degrees Celsius and Fahrenheit.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 18: Represent and Interpret Data		
Lesson 18.1 Use Picture Graphs	3.AT. 3 Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). 3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	1 day
Lesson 18.2 Make Picture Graphs	3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	1 day
Lesson 18.3 Use Bar Graphs	3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	1 day
Lesson 18.4 Make Bar Graphs	3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	1 day
INsuccess Lesson Collect Data Use before Lesson 18.5	3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve oneand two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	1 day
Lesson 18.5 Use Line Plots to Display Measurement Data	3.DA. 2 Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.	1 day
Lesson 18.6 Make Line Plots to Display Measurement Data	3.DA. 2 Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.	1 day
Lesson 18.7 Solve One- and TwoStep Problems Using Data	3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	1 day
INsuccess Lesson Make Predictions Use after Lesson 18.7	3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve oneand two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
	\quad Unit 6 GEOMETRY	

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 3	Pacing
Module 20: Categorize Two-Dimensional Shapes		
Lesson 20.1 Draw Quadrilaterals	3.G.2 Understand that shapes (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw rhombuses, rectangles, and squares as examples of quadrilaterals. Recognize and draw examples of quadrilaterals that do not belong to any of these subcategories.	1 day
Lesson 20.2 Categorize Quadrilaterals	3.G.2 Understand that shapes (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw rhombuses, rectangles, and squares as examples of quadrilaterals. Recognize and draw examples of quadrilaterals that do not belong to any of these subcategories.	1 day
Lesson 20.3 Categorize Plane Shapes	3.G.2 Understand that shapes (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw rhombuses, rectangles, and squares as examples of quadrilaterals. Recognize and draw examples of quadrilaterals that do not belong to any of these subcategories.	1 day
INsuctess Lesson Identify Solid Shapes Use after Lesson 20.3	3.G.1 Identify and describe the following: cube, sphere, prism, pyramid, cone, and cylinder.	1 day

