

Teacher Edition: Planning and Pacing Guide

Grade 2

Pacing Guide

Build Understanding
Connect Concepts and Skills
Apply and Practice
INsuccess Lessons

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Unit 1 NUMBERS TO 20 AND DATA		
Module 1: Fluency for Addition and Subtraction Within 20		
INsuccess Lesson Ordinal Numbers Use before Lesson 1.1	2.NS.4 Match the ordinal numbers first, second, third, etc., with an ordered set up to 30 items.	1 day
Lesson 1.1 Use Doubles Facts to Add	2.CA. 1 Add and subtract fluently within 100 . 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 1.2 Develop Fluency with Addition Using Mental Strategies and Properties	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	2 days
Lesson 1.3 Relate Addition and Subtraction	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 1.4 Develop Fluency with Subtraction Using Mental Strategies	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days
Lesson 1.5 Use the Make a Ten Strategy to Add	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day

In addition to the core instructional pacing below, HMH recommends the following:

- 3 days per year for the Growth Measure assessments
- 2 days per module for the Module Opener, Are You Ready?, Module Review, and Module Test
- 1 day per unit for the Performance Task

Using these recommendations, the total pacing for Grade 2 is 195 days.

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Lesson 1.6 Use a Tens Fact to Subtract	2.CA.1 Add and subtract fluently within 100. 2.CA.2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 1.7 Add 3 Numbers Using Mental Strategies and Properties	2.CA.1 Add and subtract fluently within 100. 2.CA.2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA.6 Show that the order in which two numbers are added (commutative property) and how	1 day
the numbers are grouped in addition (associative property) will not change the sum. These		
properties can be used to show that numbers can be added in any order.		

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing	
Module 2: Equal Groups		2.NS.5 Determine whether a group of objects (up to 20) has an odd or even number of members (e.g., by placing that number of objects in two groups of the same size and recognizing that for even numbers no object will be left over and for odd numbers one object will be left over, or by pairing objects or counting them by 2s).	day
Lesson 2.1 Identify Even and Odd Numbers	2.Ns.5 Determine whether a group of objects (up to 20) has an odd or even number of members (e.g., by placing that number of objects in two groups of the same size and recognizing that for even numbers no object will be left over and for odd numbers one object will be left over, or by pairing objects or counting them by 2s).	1 day	
Lesson 2.2 Write Equations to Represent Even Numbers	2.CA.5 Use addition to find the total number of objects arranged in rectangular arrays with up to 5rows and up to 5 columns; write an equation to express the total as a sum of equal groups.	1 day	
Lesson 2.3 Represent Equal Groups	2.CA.5 Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal groups.	1 day	
Lesson 2.4 Add to Find the Total Number of Objects in Arrays	2.CA.5 Use addition to find the total number of objects arranged in rectangular arrays with up to	1 day	
Lesson 2.5 Practice with Arrays	frows and up to 5 columns; write an equation to express the total as a sum of equal groups.		

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 3: Data		
Lesson 3.1 Collect and Record Data	2.DA. 1 Draw a picture graph (with single-unit scale) and a bar graph (with single-unit scale) to represent a data set with up to four choices (What is your favorite color? red, blue, yellow, green). Solve simple put-together, take-apart, and compare problems using information presented in the graphs.	1 day
Lesson 3.2 Interpret Picture Graphs	2.DA. 1 Draw a picture graph (with single-unit scale) and a bar graph (with single-unit scale) to represent a data set with up to four choices (What is your favorite color? red, blue, yellow, green). Solve simple put-together, take-apart, and compare problems using information presented in the graphs.	1 day
Lesson 3.3 Draw Picture Graphs to Represent Data	2.DA. 1 Draw a picture graph (with single-unit scale) and a bar graph (with single-unit scale) to represent a data set with up to four choices (What is your favorite color? red, blue, yellow, green). Solve simple put-together, take-apart, and compare problems using information presented in the graphs.	1 day
Lesson 3.4 Interpret Bar Graphs	2.DA. 1 Draw a picture graph (with single-unit scale) and a bar graph (with single-unit scale) to represent a data set with up to four choices (What is your favorite color? red, blue, yellow, green). Solve simple put-together, take-apart, and compare problems using information presented in the graphs.	1 day
Lesson 3.5 Draw Bar Graphs to Represent Data	2.DA. 1 Draw a picture graph (with single-unit scale) and a bar graph (with single-unit scale) to represent a data set with up to four choices (What is your favorite color? red, blue, yellow, green). Solve simple put-together, take-apart, and compare problems using information presented in the graphs.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Unit 2 PLACE VALUE		
Module 4: Understand Place Value		
Lesson 4.1 Group Tens as Hundreds	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 4.2 Understand Three-Digit Numbers	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 4.3 Represent Three-Digit Numbers	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 4.4 Represent Numbers with Hundreds, Tens, and Ones	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 4.5 Place Value to 1,000	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
INsuccess Lesson Skip Count on a Hundred Chart Use after Lesson 4.5	2.NS. 1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number.	1 day
INsuccess Lesson Skip Count on a Number Line Use after Lesson 4.5	2.CA. 7 Create, extend, and give an appropriate rule for number patterns using addition and subtraction within 1000.	1 day
INsuccess Lesson Compare Numbers on a Number Line Use after Lesson 4.5	2.NS. 3 Plot and compare whole numbers up to 1,000 on a number line.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 5: Read, Write, and Show Numbers to 1,000		
Lesson 5.1 Use Expanded Form	2.NS. 2 Read and write whole numbers up to 1,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000 . 2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 5.2 Use Number Names	2.NS. 2 Read and write whole numbers up to 1,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000 . 2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 5.3 Different Ways to Write Numbers	2.NS. 2 Read and write whole numbers up to 1,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000 . 2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 5.4 Different Ways to Show Numbers	2.NS. 2 Read and write whole numbers up to 1,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000 . 2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 5.5 Read, Write, and Show Numbers	2.NS. 2 Read and write whole numbers up to 1,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000 . 2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 6: Use Place Value		
Lesson 6.1 Count Within 1,000	2.NS. 1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number.	1 day
Lesson 6.2 Add and Subtract 10 or 100	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1 day
Lesson 6.3 Identify and Extend Number Patterns	2.NS. 1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number. 2.CA. 7 Create, extend, and give an appropriate rule for number patterns using addition and subtraction within 1000.	1 day
Lesson 6.4 Compare Three-Digit Numbers	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NS. 7 Use place value understanding to compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.	1 day
Lesson 6.5 Use Symbols to Compare Numbers	2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers 100, 200, $300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2.NS. 7 Use place value understanding to compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Unit 3 MONEY AND TIME		
Module 7: Coins	2.NS.1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number. 2.M.7 Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	1 day
Lesson 7.1 Relate Place Value to Coins	2.M.7 Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	2 days
Lesson 7.2 Identify and Find the Value of Coins	2.M.7 Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	1 day
Lesson 7.3 Compute the Value of Coin Combinations	2.M.7 Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	2 days
Lesson 7.4 Show Amounts in Different Ways		

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 8: Dollar Amounts	1 day	
Lesson 8.1 Relate the Value of Coins to One Dollar	2.M.7 Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	1 day
Lesson 8.2 Compute the Value of Dollar Combinations	2.M.7 Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	2 days
Lesson 8.3 Solve Problems Involving Money	2.M.7 Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	

| Lesson | Indiana Academic Standards: Mathematics (2020), Grade 2 | Pacing |
| :--- | :--- | :--- | :--- |
| Module 9: Time | 2.M.5 Tell and write time to the nearest five minutes from analog clocks, using a.m. and p.m.
 Solve real-world problems involving addition and subtraction of time intervals on the hour or half
 hour. | 1 day |
| Lesson 9.1
 Tell and Write Time to
 5 Minutes | 2.M.5 Tell and write time to the nearest five minutes from analog clocks, using a.m. and p.m.
 Solve real-world problems involving addition and subtraction of time intervals on the hour or half
 hour. | 2 days |
| Lesson 9.2
 Different Ways to Tell
 and Write Time | 2.M.5 Tell and write time to the nearest five minutes from analog clocks, using a.m. and p.m.
 Solve real-world problems involving addition and subtraction of time intervals on the hour or half
 hour. | 1 day |
| Lesson 9.3
 Practice Telling and
 Writing Time | 2.M.5 Tell and write time to the nearest five minutes from analog clocks, using a.m. and p.m.
 Solve real-world problems involving addition and subtraction of time intervals on the hour or half
 hour. | 1 day |
| Lesson 9.4
 Tell and Write Time
 with A.M. and P.M. | 2.M.5 Tell and write time to the nearest five minutes from analog clocks, using a.m. and p.m.
 Solve real-world problems involving addition and subtraction of time intervals on the hour or half
 hour. | 1 day |
| INsuccess Lesson
 Measure Time Interval
 Use after Lesson 9.4 | 2.M.6 Describe relationships of time, including: seconds in a minute; minutes in an hour; hours
 in a day; days in a week; and days, weeks, and months in a year. | 1 day |
| INsuccess Lesson
 Units of Time
 Use after Lesson 9.4 | | |

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Unit 4 TWO-DIGIT ADDITION AND SUBTRACTION		
Module 10: Addition and Subtraction Counting Strategies		
Lesson 10.1 Use a Hundred Chart	2.NS. 1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number. 2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 10.2 Use a Number Line	2.NS. 1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number. 2.CA. 1 Add and subtract fluently within 100 . 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 10.3 Use Counting Strategies	2.NS. 1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number. 2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 11: Addition and Subtraction Grouping Strategies		
Lesson 11.1 Decompose Ones to Add	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 11.2 Decompose Ones to Subtract	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 11.3 Decompose Numbers to Add	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 11.4 Decompose Addends as Tens and Ones	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 11.5 Decompose Numbers to Subtract	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 12: Represent and Record Addition and Subtraction		
Lesson 12.1 Represent Regrouping for Addition	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 12.2 Represent Regrouping for Subtraction	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 12.3 Represent and Record Two-Digit Addition	2.CA. 1 Add and subtract fluently within 100 . 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days
Lesson 12.4 Represent and Record Two-Digit Subtraction	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days
Lesson 12.5 Add Two-Digit Numbers	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
INsuccess Lesson Estimate Sums Use after Lesson 12.5	2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 12.6 Subtract Two-Digit Numbers	2.CA. 1 Add and subtract fluently within 100 . 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 13: Develop Addition and Subtraction Fluency		
Lesson 13.1 Rewrite Addition Problems	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 13.2 Rewrite Subtraction Problems	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	1 day
Lesson 13.3 Use Addition and a Number Line to Subtract	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 13.4 Add 3 Two-Digit Numbers Using Strategies and Properties	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	2 days
Lesson 13.5 Add 4 Two-Digit Numbers Using Strategies and Properties	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems. 2.CA. 6 Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	2 days

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 14: Algebra		
Lesson 14.1 Use Drawings to Represent Addition and Subtraction Situations	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days
Lesson 14.2 Use Equations to Represent Addition and Subtraction Situations	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days
Lesson 14.3 Use Drawings and Equations to Represent Two-Digit Addition	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days
Lesson 14.4 Use Drawings and Equations to Represent Two-Digit Subtraction	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 15: Addition and Subtraction Word Problems		
Lesson 15.1 Solve Addition Word Problems	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 15.2 Solve Subtraction Word Problems	2.CA. 1 Add and subtract fluently within 100. 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	1 day
Lesson 15.3 Solve Multistep Addition and Subtraction Problems	2.CA. 1 Add and subtract fluently within 100 . 2.CA. 2 Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	2 days

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Unit 5 THREE-DIGIT ADDITION AND SUBTRACTION		
Module 16: Three-Digit Addition		
Lesson 16.1 Use Drawings to Represent Three-Digit Addition	2.CA. 4 Add and subtract within 1000 , using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 16.2 Decompose ThreeDigit Addends	2.CA. 4 Add and subtract within 1000 , using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 16.3 Represent Regrouping for Addition	2.CA. 4 Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 16.4 Add Three-Digit Numbers	2.CA. 4 Add and subtract within 1000 , using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 17: Three-Digit Subtraction		
Lesson 17.1 Represent Three-Digit Subtraction	2.CA. 4 Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 17.2 Represent Regrouping for Subtraction	2.CA. 4 Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 17.3 Subtract Three-Digit Numbers	2.CA. 4 Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 17.4 Represent Regrouping with Zeros	2.CA. 4 Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 17.5 Regrouping with Zeros	2.CA. 4 Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day
Lesson 17.6 Add and Subtract Three-Digit Numbers	2.CA. 4 Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Unit 6 MEASUREMENT: LENGTH		
Module 18: Length in Inches, Feet, and Yards		
Lesson 18.1 Estimate Lengths Using Inches	2.M.1 Describe the relationships among inch, foot, and yard. Describe the relationship between centimeter and meter. 2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 18.2 Make and Use a Ruler	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	2 days
Lesson 18.3 Measure to the Nearest Inch	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 18.4 Make Line Plots to Show Measurement Data	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	2 days
Lesson 18.5 Estimate Lengths Using Feet	2.M. 1 Describe the relationships among inch, foot, and yard. Describe the relationship between centimeter and meter. 2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter. 2.M. 3 Understand that the length of an object does not change regardless of the units used. Measure the length of an object twice using length units of different lengths for the two measurements. Describe how the two measurements relate to the size of the unit chosen.	1 day
Lesson 18.6 Measure in Inches and Feet	2.M. 3 Understand that the length of an object does not change regardless of the units used. Measure the length of an object twice using length units of different lengths for the two measurements. Describe how the two measurements relate to the size of the unit chosen.	1 day
Lesson 18.7 Measure to the Nearest Yard	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	2 days
INsuccess Lesson Measure in Feet and Yards Use after Lesson 18.7	2.M. 1 Describe the relationships among inch, foot, and yard. Describe the relationship between centimeter and meter.	1 day
INsuccess Lesson Estimate Yards Use after Lesson 18.7	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 18.8 Choose Appropriate Tools	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
INsuccess Lesson Cups and Pints Use after Lesson 18.8	2.M. 4 Estimate and measure volume (capacity) using cups and pints.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 19: Length in Centimeters and Meters		
Lesson 19.1 Estimate Lengths Using Centimeters	2.M.1 Describe the relationships among inch, foot, and yard. Describe the relationship between centimeter and meter. 2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 19.2 Measure to the Nearest Centimeter	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 19.3 Estimate Lengths Using Meters	2.M. 1 Describe the relationships among inch, foot, and yard. Describe the relationship between centimeter and meter. 2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 19.4 Measure in Centimeters and Meters	2.M. 1 Describe the relationships among inch, foot, and yard. Describe the relationship between centimeter and meter. 2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter. 2.M. 3 Understand that the length of an object does not change regardless of the units used. Measure the length of an object twice using length units of different lengths for the two measurements. Describe how the two measurements relate to the size of the unit chosen.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Module 20: Relate Addition and Subtraction to Length		
Lesson 20.1 Relate Inches to a Number Line	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 20.2 Add and Subtract Lengths in Inches	2.CA. 3 Solve real-world problems involving addition and subtraction within 100 in situations involving lengths that are given in the same units (e.g., by using drawings, such as drawings of rulers, and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 20.3 Relate Centimeters to a Number Line	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day
Lesson 20.4 Add and Subtract Lengths in Centimeters	2.CA. 3 Solve real-world problems involving addition and subtraction within 100 in situations involving lengths that are given in the same units (e.g., by using drawings, such as drawings of rulers, and equations with a symbol for the unknown number to represent the problem).	1 day
Lesson 20.5 Measure and Compare Lengths in Centimeters	2.M. 2 Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	1 day

Lesson	Indiana Academic Standards: Mathematics (2020), Grade 2	Pacing
Unit 7 GEOMETRY AND FRACTIONS		
Module 21: Two- and Three-Dimensional Shapes		
Lesson 21.1 Identify and Draw Three-Dimensional Shapes	2.G. 1 Identify, describe, and classify two- and three-dimensional shapes (triangle, square, rectangle, cube, right rectangular prism) according to the number and shape of faces and the number of sides and/or vertices. Draw two-dimensional shapes. 2.G.2 Create squares, rectangles, triangles, cubes, and right rectangular prisms using appropriate materials.	1 day
Lesson 21.2 Identify and Draw Two-Dimensional Shapes	2.G. 1 Identify, describe, and classify two- and three-dimensional shapes (triangle, square, rectangle, cube, right rectangular prism) according to the number and shape of faces and the number of sides and/or vertices. Draw two-dimensional shapes. 2.G.2 Create squares, rectangles, triangles, cubes, and right rectangular prisms using appropriate materials.	2 days
Lesson 21.3 Find and Count Angles in Two-Dimensional Shapes	2.G. 1 Identify, describe, and classify two- and three-dimensional shapes (triangle, square, rectangle, cube, right rectangular prism) according to the number and shape of faces and the number of sides and/or vertices. Draw two-dimensional shapes. 2.G.2 Create squares, rectangles, triangles, cubes, and right rectangular prisms using appropriate materials.	1 day
Lesson 21.4 Sort Two-Dimensional Shapes by Sides and Angles	2.G. 1 Identify, describe, and classify two- and three-dimensional shapes (triangle, square, rectangle, cube, right rectangular prism) according to the number and shape of faces and the number of sides and/or vertices. Draw two-dimensional shapes. 2.G.2 Create squares, rectangles, triangles, cubes, and right rectangular prisms using appropriate materials.	1 day
INsuccess Lesson Combine ThreeDimensional Shapes Use after Lesson 21.4	2.G. 3 Investigate and predict the result of composing and decomposing two- and threedimensional shapes.	1 day
INsuccess Lesson Take Apart ThreeDimensional Shapes Use after Lesson 21.4	2.G. 3 Investigate and predict the result of composing and decomposing two- and threedimensional shapes.	1 day
INsuccess Lesson Model Shapes Use after Lesson 21.4	2.G.2 Create squares, rectangles, triangles, cubes, and right rectangular prisms using appropriate materials.	1 day
INsuccess Lesson Combine TwoDimensional Shapes Use after Lesson 21.4	2.G. 3 Investigate and predict the result of composing and decomposing two- and threedimensional shapes.	1 day
INsuccess Lesson Take Apart TwoDimensional Shapes Use after Lesson 21.4	2.G. 3 Investigate and predict the result of composing and decomposing two- and threedimensional shapes.	1 day

| Lesson | Indiana Academic Standards: Mathematics (2020), Grade 2 | Pacing |
| :--- | :--- | :--- | :--- |
| Module 22: Understand Fractions | 2.G.4 Partition a rectangle into rows and columns of same-size (unit) squares and count to find
 the total number of same-size squares. | $\mathbf{1}$ day |
| Lesson 22.1
 Partition Rectangles | 2.G.5 Partition circles and rectangles into two, three, or four equal parts; describe the shares
 using the words halves, thirds, half of, a third of, etc.; and describe the whole as two halves,
 three thirds, four fourths. Recognize that equal parts of identical wholes need not have the same
 shape. | 2 days |
| Lesson 22.2
 Identify and Describe
 Equal Shares | 2.G.5 Partition circles and rectangles into two, three, or four equal parts; describe the shares
 using the words halves, thirds, half of, a third of, etc.; and describe the whole as two halves,
 three thirds, four fourths. Recognize that equal parts of identical wholes need not have the same
 shape. | 1 day |
| Lesson 22.3
 Draw Equal Shares | | |
| Lesson 22.4
 Show and Describe an
 Equal Share | 2.G.5 Partition circles and rectangles into two, three, or four equal parts; describe the shares
 using the words halves, thirds, half of, a third of, etc.; and describe the whole as two halves,
 three thirds, four fourths. Recognize that equal parts of identical wholes need not have the same
 shape. | 2 days |

